

The Genome Analysis Centre™

Greater Norwich Development Partnership

Sequencing Genebank Collections: Challenges and Opportunities

Sarah Ayling sarah.ayling@tgac.ac.uk

Benefits of sequencing a collection

- Genebank management
 - Regeneration of accessions
 - Check for mix-ups
 - Intra-accession diversity maintained
 - Redundancy
 - Split / merge / archive accessions
 - Add that new accession?

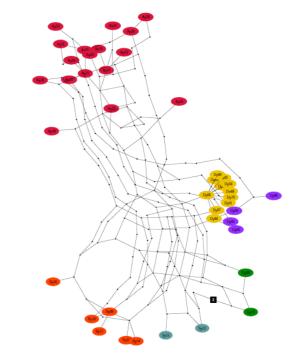
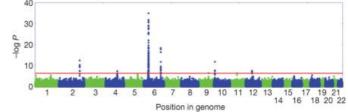


Photo: CGIAR/IRRI

Benefits of sequencing a collection


- Development of marker sets for QTL mapping
- Diversity studies
 - Inclusion of genetic diversity into breeding programs
 - Origins of domestication and evolutionary studies
 - Ease of crossing

GWAS and GS

- Genome wide association studies (GWAS)
 - Detailed phenotyping and genotyping of unstructured population
 - Identify markers associated with phenotype

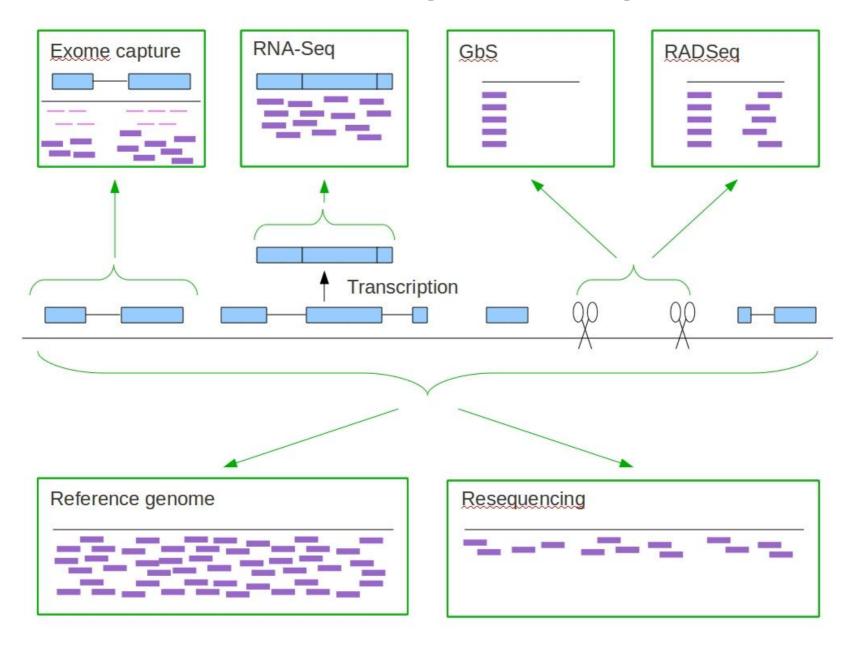
- Genomic Selection (GS)
 - Detailed phenotyping and genotyping of training set
 - Genotype a related set
 - Estimate breeding values based on genotype

Phenotyping challenges

- Intra-accession variability
 - SSD prior to genotyping and phenotyping
 - Increase size of collections or discard?
- Phenotyping crop wild relatives
 - Unfavourable genetic backgrounds mask allele effects
 - Multi-location phenotyping requires widely adapted materials
 - Wide crosses into widely adapted elite materials?

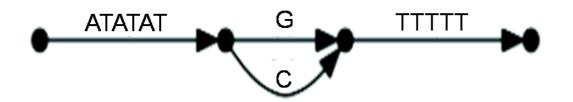
Genotyping many collections?

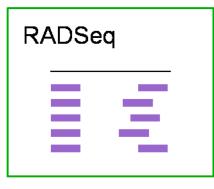
- Challenge: identify a single cost-effective strategy suitable for all crops listed in Annexe I of the International Treaty on Plant Genetic Resources for Food and Agriculture
- Different crop genomes have different features


Images from Wikipedia

Genome features affect^{The Genome Analysis Centre}" sequencing strategies

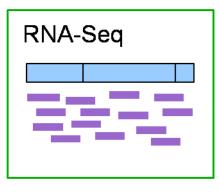
- Size and repeats
 - Large genomes require more sequencing
 - Repeats confound assemblies
- Polyploidy and heterozygosity
 - Homozygous 6x, heterozygous 13.5x (P>= 0.9975)
 - Assemblies may be chimeric
- Linkage Disequilibrium (LD)
 Wheat, inbreeder, high LD, require fewer markers Maize, outcrosser, low LD, require more markers


Sequencing strategies

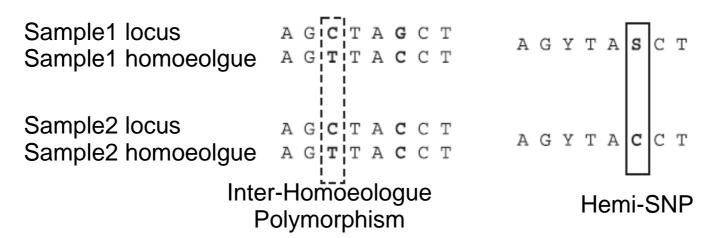


Do we need a reference genome?

- Enables exploration of regions near markers
- GWAS needs ordered markers
 - Genetic map
 - Synteny-based
- Flexible non-linear reference
 - FASTG (Jaffe, MacCallum, Rokhsar & Schatz)

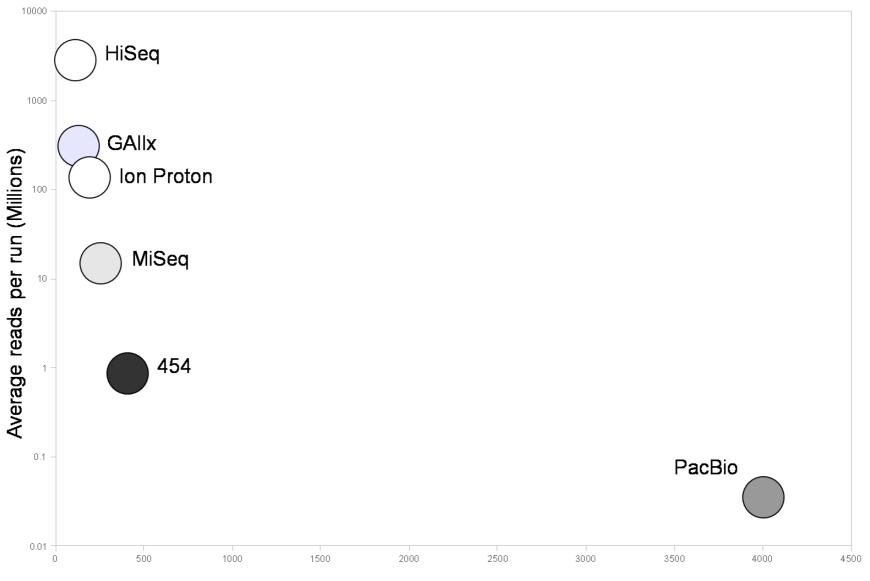

>xxx; ATATAT G[1:alt|G,C] TTTTT

Stacks/RADtools


- De novo or reference guided
- Identify loci based on stacks
- Generates markers for genetic mapping
- Stacks designed for diploids
- RADtools has also been used for allopolyploids
 - e.g. *B. napus*: Bus *et al.* BMC Genomics 2012, 13:281

Associative transcriptomics

- *B. napus*: Harper et al., Nature Biotech. 2012, 30: 78–802
- Deep sequencing of juvenile leaf tissue
- De novo assembly of RNAseq data into unigenes
- Order unigenes based on linkage mapping and synteny with related species
- GWAS with SNPs and/or expression markers



- Barley and wheat: Poland et al. PloS One 2012, 7:e32253
- Two enzyme GbS protocol
- Bi-parental populations of double haploid lines
- Bi-allelic SNPs identified and filtered based on
 - Frequency in population >20%
 - Expect allelic SNPs to be mutually exclusive
- Added markers to reference genetic maps
 - 34K to barley and 20K to wheat

Sequencing technologies

Average read length (bp)

Novel sequencing technologies

- Single molecule sequencers coming...
- General trends:
 - Longer read lengths
 - Faster run times
 - Cheaper per base
- Should we wait longer?

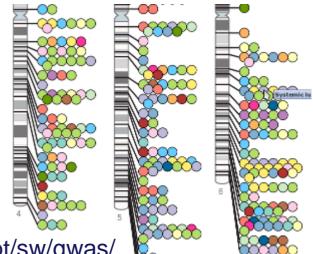
CGIAR projects underway

- Rice resequencing
 - IRRI
- Maize and wheat GbS
 - CIMMYT
- Cassava RADSeq
 - CIAT, IITA and EMBRAPA
- Chickpea and pigeonpea reference set resequencing
 - ICRISAT

Data standards and documentation

- Sequencing metadata
- Variant call format VCF, SHORE
- Detailed documentation of analyses
- Phenotyping protocols and metadata
- Crop and trait ontologies
- Links to accessible seed

Tools and Resources


- Bioinformatics and compute capacity limited
- Data sets are Tb+
- Central location for analysis
 - e.g. Cloud, iPlant, etc
- Best practices for analysis are still evolving...
- Galaxy
 - Share workflows
 - Histories

Data visualisation and access

- Query data by accession, trait, gene, SNP etc.
- Integrate large data sets and visualisation tools
 - Polyploid genome browser
 - Visual summaries of data for thousands of accessions
 - Links to germplasm and pedigree/collection
 - QTL and associations, gene annotation etc
 - Genome view to locus view

http://www.ebi.ac.uk/fgpt/sw/gwas/

Developing a standard interface

- Reusable for different crops / genebanks
- Easier for users of >1 genebank
- Extendable interface, community development
- Standardised data formats will enable mirroring
 of data between centres
 - e.g. Ensembl, UCSC and NCBI

Community involvement

- User requirements
- Training workshops
- Community annotation fed back in
- Open access to data and tools
- Accelerate genebank research

Add your thoughts

- Initial report can be found here:
- http://agro.biodiver.se/its-germplasm-evaluation-jim-butnot-as-we-know-it/
- Strategy for pilot project ideas and feedback welcome

Agricultural Biodiversity Weblog

Crops, animals, wild relatives ...

It's germplasm evaluation, Jim, but not as we know it

Next generation sequencing (NGS) holds the promise for a more efficient approach to germplasm evaluation whereby a carefully selected subset of accessions can be sequenced and phenotyped in detail; associations discovered between genotypes and phenotypes in this subset could be used to predict the phenotype of other accessions based on sequence data alone.

FRESH NIBBLES: J CLICK TO COMMEN

- The latest bit of CGIAl research should be for
- The Futures of Agricu Love that plural, though
- And of course UNEP r
- Oh, wow, someone act

Acknowledgements

CIAT: Steve Beebe, Daniel Debouck, Cecile Grenier, Mathias Lorieux, Joe Tohme

CIMMYT: Peter Wenzl

Cornell: Ed Buckler, Jean-Luc Jannink, Susan McCouch

Generation Challenge Program: Jean-Marcel Ribaut

Global Crop Diversity Trust: Hannes Dempewolf, Luigi Guarino, Geoff Hawtin

ICRISAT: Rajeev Varshney

IDna Genetics: Peter Isaac

IRRI: Hei Leung, Ramil Mauleon, Ken McNally, Ruaraidh Sackville Hamilton

JIC: Mike Ambrose, Ian Bancroft, Cristobal Uauy

TGAC: Mario Caccamo, Donatien Chedom-Fotso, Matt Clark, Nizar Drou, Rocio Enriquez Gasca, Darren Heavens, Kirsten McLay, David Swarbreck, Chris Watkins

USDA: Jinguo Hu, Chris Richards

