Natural = fashionable = good

Did your heart skip a beat when you read the news that a researcher had turned a byproduct of biodiesel into fish that make people healthier? It seems to have been picked up all over the place. In essence, making biodiesel results in large quantities of crude glycerol, which needs expensive purification before you can added it to white wine or anti-freeze. However, microalgae can use the glycerol as a feedstock and make omega-3 fatty acids from it. And fish can eat the microalgae, retaining the omega-3s. And people can eat the fish and gain the benefits.

At last, a good reason to support biodiesel!

Well, Gary Jones took the whole fuss apart in great style.

Tasteful breeding

A couple of days ago the Evil Fruit Lord complained — a little bit — about an article in a Ugandan newspaper which extolled the virtues of traditional crops and varieties over new-fangled hybrids. While not doubting the many attractive qualities of landraces and heirloom varieties, he quite rightly pointed out that there’s nothing to stop modern varieties and hybrids tasting just as good:

I get really sick of the tendency to talk about plant breeding as a process which makes crops into finicky, crappy tasting garbage in exchange for yield. You absolutely can create varieties which taste as good (or better) than traditional varieties, produce more, and resist pests. In fact, plant breeding is the only way to get to that.

Now there’s an article by Arthur Allen in Smithsonian magazine which basically says — not very surprisingly, I suppose — that both those things have happened in the tomato:

Flavor … has not been a goal of most breeding programs. While importing traits like disease resistance, smaller locules, firmness and thicker fruit into the tomato genome, breeders undoubtedly removed genes influencing taste. In the past, many leading tomato breeders were indifferent to this fact. Today, things are different. Many farmers, responding to consumer demand, are delving into the tomato’s preindustrial past to find the flavors of yesteryear.

Allen has a good word to say for the wild relatives:

The architect of the modern commercial tomato was Charles Rick, a University of California geneticist. In the early 1940s, Rick, studying the tomato’s 12 chromosomes, made it a model for plant genetics. He also reached back into the fruit’s past, making more than a dozen bioprospecting trips to Latin America to recover living wild relatives. There is scarcely a commercially produced tomato that didn’t benefit from Rick’s discoveries. The gene that makes such tomatoes easily fall off the vine, for instance, came from Solanum cheesmaniae, a species that Rick brought back from the Galapagos Islands. Resistances to worms, wilts and viruses were also found in Rick’s menagerie of wild tomatoes.

And he also plugs genebanks:

…we can take comfort in the tomato’s continuing, explosive diversity: the U.S. Department of Agriculture has a library of 5,000 seed varieties, and heirloom and hybrid seed producers promote thousands more varieties in their catalogs.

Not quite sure where he got that number, as the C.M. Rick Tomato Genetic Resources Center seems to have about 3,500 accessions, but anyway.