Genebanks as force multipliers

The Center on Global Food and Agriculture has a report out called “Defining the Path to Zero Hunger in an Equitable World” which basically tries to add humanitarian assistance to the old food-climate-biodiversity nexus. Crop diversity is nowhere to be found among the “catalyzing ideas,” alas. However, one of those ideas is investing in “force multipliers,” and one of those multipliers is agricultural research and development. So I guess there’s an opening there for genebanks. But why do they have to be such a hard sell?

Ah but wait, I see other catalyzing ideas are “get the word out” and “articulate what we want.” Roger that.

Brainfood: 100 plant science questions, Biodiversity data, Cropland expansion double, CC & yields, Crop diversity & stability, Nutritious crops double, Feminist markets

How Native Americans got their horses

You know how you read in history textbooks that the Native Americans of the Great Plains got hold of horses from retreating Spanish colonists after the Pueblo Revolt of 1680? And you know how Native Americans have been saying that’s not what they think happened? That they in fact got their horses long before that? You know how rare it is that a scientific paper involving museum specimens and DNA includes Indigenous authors? And that said paper overturns a mainstream historical narrative and is then splashed all over the mainstream media? Very rare, that’s how rare.

The cost of tomatoes

I don’t know whether the article in The Media Line ((Strap line: Trusted Mideast News.)) a few days ago entitled “Israeli Scientists Develop Drought-Resistant Tomatoes in Response to Climate Change” was based on a press release. But if it wasn’t, it’s a pretty good catch, given the paper on which it is based is called “Epistatic QTLs for yield heterosis in tomato.” ((It’s part of the PNAS Special Feature: Harnessing Crop Diversity.))

Anyway, what the authors of the paper did was cross a wild tomato with a cultivated one, which conjured up about 1,500 different progenies, each with a different bit of wild genome. They then figured out which of those bits of genome were good at allowing their possessor to grow well with less water than normal.

According to our Trusted Mideast News source:

The study found that two specific areas in the plant’s genome lead to a 20%-50% increase in the overall yield in both regular and dry conditions. The overall size of the plant also was improved.

According to the researchers, the findings demonstrate the effectiveness of using wild species to enhance agricultural output. They could also prove to be widely applicable to other plants in the future.

Which got me thinking. Effective, sure. But how long did it take? Digging a little deeper revealed that the work relied on a genome of the wild tomato Solanum pennellii that was published in 2017. But that’s not where it all started:

…we sequenced and assembled the accession LA5240 (LYC1722) of the wild tomato species Solanum pennellii, an accession that was identified spuriously. Unlike the Solanum pennellii accession LA0716, for which we have previously generated a high quality draft genome, the accession LA5240 does not appear to exhibit any dwarfed, necrotic leaf phenotype when introgressed into modern tomato cultivars.

And that LA0716 was sequenced in 2014.

So our new climate-change-proof tomato was almost 10 years in the making and relied on a “spuriously” identified accession. Well done and all, but gosh, I hope the next one is easier.

Oh, and here’s a nice detail to close. The LA in LA5204? It stands for “Lost Accession.” What’s the story there, I wonder?