Controlling self-pollination

Not a day passes, it seems, without news of yet another important gene being identified and mapped. Not long after geneticists uncovered the trigger for flowering, we now have news that researchers at Cornell are close to tracking down the genes that regulate a plant’s ability to self-pollinate. Good news for breeders everywhere.

Flowering trigger uncovered

Some clever genetic manipulation has led scientists to identify the chemical that allows daylength to trigger flowering in plants – all plants, it looks like. It is the protein produced by the gene called Flowering Locus T, or FT. This means that crop beeders will now have a better shot at developing varieties which will flower at different latitudes, useful as climate zones shift due to climate change.

Chinese fungi and tea

I’m killing a few hours at Hong Kong International Airport, so I pick up the latest issue of China Today. There’s a number of really interesting articles, but two little snippets jumped out at me. The first is a short note on the Chinese Caterpillar Fungus, Cordyceps sinensis. No, I’d never heard of it either, but it turns out that it is important in Chinese traditional medicine, and that it has not been possible to grow it in the lab. Until just now that is, hence the note in the Sci-tech Info section announcing the possibility of mass-production.

The other really nifty piece of sino-information occurs in the opening section of an Around China piece on the Zhenyuan Yi-Hani-Lanu Autonomous County. It seems that this ancient tea-growing area, with its tea-dominated forests, boasts what is considered the oldest and largest tea plant in the world. At 25 metres tall, almost 3 metres in diameter and an alleged 2,700 years of age, it is apparently quite the tourist attraction, and “its fleshy, glossy leaves produce a strong and lasting flavour.”

Transgenic salmon

One of the major concerns about transgenic plants and animals has always been that they could escape and that transgenes could then spread into wild populations with mostly unforeseeable consequences. ((Contribution by Michael Kubisch)) For most farmed animal species, cattle, goats or sheep for example, this is not much of a problem because there are no true wild populations with which escapees could hybridize. However, farmed fish, such as salmon or catfish, do have wild relatives, reproduce relatively fast and farmed fish do occasionally escape into the wild, even in large numbers. This has led to a number of estimates and models of what impact such transgenic escapees might have on resident fish populations or on their prey species.

A recent article tells a cautionary tale about the value of such predictions by demonstrating that advantages which transgenic animals have “down on the farm”, such as a faster growth rate if they carry extra copies of the growth hormone (GH) gene, may in fact be less obvious  in the wild. The article describes a study in which GH-transgenic and wild-caught coho salmon were compared in either a conventional hatchery or a simulated natural environment. Under hatchery conditions, in which fish were fed a commercially available diet, the transgenic salmon grew to nearly three times the size of their wild cousins. However, in the natural environment, in which fish were exclusively fed natural food items, transgenics had only a 20% weight advantage. When the salmon were introduced to prey species, in this case trout fry, the impact of transgenic animals on their prey was reflective of their environment and size and the impact of transgenics on prey was much reduced.

While this says relatively little about the actual impact of transgenic escapees on resident fish populations, it does show that accurate predictions may be much harder to come by than previously assumed.

Green Revolution 2.0

We’ve blogged before about reaction to the Alliance for a Green Revolution in Africa, funded by the Bill and Melinda Gates Foundation and the Rockefeller Foundation. A significant portion of the $150 million earmarked for the Alliance will go into improving crop varieties, using both conventional breeding and biotechnological approaches. Two more takes on the whole thing came out today. Here, the great Ethiopian plant genetic resources conservationist Melaku Worede talks about what went wrong with the first Green Revolution, and what he fears will happen in Africa if the same thing is tried there. While here you can read about how high-placed politicians in Mozambique say the country is “striving toward a green revolution to improve and diversify agriculture and increase food production” and are putting their money where their mouths are.

P.S. Incidentally, the BBC World Service has a new series called “Feeding the World,” and the first programme is about the Green Revolution. You can download a podcast here.