- Banana germplasm gets around.
- Kenyan urban cows get around. Not local breeds, though…
- Can agriculture deliver both resilience and nutrition? FAO thinks so.
- Yeah, about that: we’re gonna need better data.
- Participatory varietal selection in Nepal. Not as novel as made out here, surely.
- Brazil nut gets it all.
- Today’s beer story comes from India.
- Sorting the sheep from the goats, the molecular way.
Nibbles: De Schutter, Madagascar beans, Beer!, Cocktails!, CIAT strategy, Segenet, FGR, Risotto again, Domestication, Quinoa, Medieval workplan, Late blight
- “Productivism” skewered one last time. Until the next time.
- The Malagasy Bean Renaissance. No, really.
- The science of beer foam. Now there’s no excuse.
- Cocktails can be biodiverse too. You bet they can.
- CIAT’s new strategy makes a splash. Genebank front and centre.
- New ICIPE director tells all. She used to work at CIAT, did you know?
- First edition of The State of the World’s Forest Genetic Resources is out. Now to do something about it.
- Italy’s traditional rices preserved. Yes, Italy’s, you heard me.
- Agriculture was invented in the current interglacial. Why then, and not in the Eemian?
- Quinoa macronutrients exzzzzzzzamined.
- Your what-to-do-now guide to the medieval farm. Progress? Not what it’s cracked up to be.
- People of the Toluca valley! Expect researchers looking for wild potato genes resistant to late blight.
Nibbles: Early ag, Land data, CAP, African droughts, Risotto, Cowpea research, Reforestation
- Conditions at the dawn of Fertile Crescent agriculture were wetter and more, well, fertile. Been downhill ever since.
- Digitizing land data may not be good for women.
- European agricultural policies bad for diets.
- Africa will continue to face droughts. Looks like nobody can catch a break today.
- Ah, ok, here’s something good. Italian rice a hit in China. Gotta get your victories where you can.
- And some feel-good stuff on cowpea research in Mozambique.
- And to conclude our return from the slough of despond, some encouraging news about forest restoration.
How are forest genetic resources involved in responding to climate change?
According to Ian Dawson, one of the authors of a recent review in Forest Ecology and Management 1, led by Rene Alfaro, it depends…
The evidence for the negative effects of climate change on forests globally is mounting, with a good example being the outbreak of mountain pine beetle in British Columbia, Canada, believed to be caused by unusually warm winters. It has attacked more than 13 million hectares of lodgepole pine forests over the last decade. Such climate-influenced pest and disease attacks may be particularly problematic for trees, as pests and diseases with shorter generation intervals can evolve more quickly in response to new environmental conditions than their hosts can.
Phenotypic plasticity (the capacity of a particular genotype to express different phenotypes under different environmental conditions), genetic adaptation and seed and pollen migration all have a role to play in responding to climate change, but the speed at which environments alter may be greater than the ability of trees to cope through natural processes, and human help may sometimes be needed. Just as natural responses to climate change depend on genetic resources, so too do human-mediated responses such as altered forest management practices, the facilitated translocation of tree planting material and tree breeding.
Forest managers, however, sometimes question whether interventions formulated to respond to climate change are economically justified, and tropical foresters are likely to consider commercial agriculture and unplanned logging more important production threats. In this setting, appropriate management interventions that are good practice under ‘business as usual’ scenarios are likely to be more effective than those specifically to address climate issues.
For the future, field trials established across different environments are required that allow a better understanding of adaptive variation in tree species, including in drought, pest, disease and fire tolerance and resistance. Another interesting question to address is what role epigenetics (check out the term on Wikipedia) has in responding to climate change by providing a temporary buffer against environmental variability, giving the genome time to ‘catch up’ with change.
When dealing with trees that might only be harvested 100 years after they are planted, estimating the level of future climate uncertainty is obviously crucial. Otherwise, the planting of the wrong species at a site could be catastrophic perhaps decades into the future, as observed when 30,000 ha of maritime pine plantations were destroyed in France during the winter of 1984/1985, following the introduction from the 1940s of non-frost-resistant material from the Iberian Peninsula. New breeding approaches to those currently used are also required, as current methods, with the long generation times of trees, are often too slow to respond to change.
Brainfood: Lima been diversity, Cassava diversity, Urban soils, Oil palm seed supply, Ginger ploidy, Certification, Gene flow, Maize & drought, Coffee seed storage, Pathogens on seeds, Wheat breeding, Intensification tradeoffs
- Genetic structure within the Mesoamerican gene pool of wild Phaseolus lunatus (Fabaceae) from Mexico as revealed by microsatellite markers: Implications for conservation and the domestication of the species. Three, not just two, genepools.
- Farmer’s Knowledge on Selection and Conservation of Cassava (Manihot esculanta) Genetic Resources in Tanzania. Farmers exchange landraces, some of which are widespread and others more restricted in distribution. Only about 10% are new, but some have been lost.
- Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture. You can farm in cities without killing the soil.
- Social institutional dynamics of seed system reliability: the case of oil palm in Benin. Farmers are being increasingly screwed.
- Natural occurrence of mixploid ginger (Zingiber officinale Rosc.) in China and its morphological variations. About a quarter of plants have both diploid and tetraploid cells, and they look different; no plants are wholly tetraploid. Weird.
- Conserving biodiversity through certification of tropical agroforestry crops at local and landscape scales. Certifying the coffee or cacao farm only is usually not enough.
- Is gene flow the most important evolutionary force in plants? May well be, which means that conservationists, among others, need to take it into account. Fortunately, they have the data-rich genomic tools to do so.
- Greater Sensitivity to Drought Accompanies Maize Yield Increase in the U.S. Midwest. It’s agronomy’s fault.
- Desiccation and storage studies on three cultivars of Arabica coffee. Yeah, not orthodox. Didn’t we know that already though?
- Seed-borne fungi on genebank-stored cruciferous seeds from Japan. There’s lots of them. And something needs to be done about it.
- Delivering drought tolerance to those who need it; from genetic resource to cultivar. In making synthetic wheat, you can fiddle with the AB as well as the D genomes, but then you have to phenotype properly under target stress conditions, and have a way of tailoring the resulting global public goods to local needs.
- The Effects of Agricultural Technological Progress on Deforestation: What Do We Really Know? Not as much as we thought we did.
- Large-scale trade-off between agricultural intensification and crop pollination services. Intensification bad for pollinators in France, so bad for agricultural productivity and stability.
- Achieving production and conservation simultaneously in tropical agricultural landscapes. Intensification good for smallholder income in Uganda, bad for birds. If only birds were pollinators.