- Let “The Bean Counters” show you where to collect wild Phaseolus.
- Protected areas get wikified.
- Expensive book published on the heritage breeds of New Zealand.
- Wild boar going crazy in France.
- Another Hawaiian taro festival. And why not.
- Ecosystems for climate change adaptation. No agroecosystems though.
- Moringa! Not just for people.
- Camelina! Not just for Europeans.
- What is it about barley wild relatives lately?
Links between trait and ecogeographic data found for Nordic barley landraces
As promised yesterday, here’s a summary of Dag Terje Endresen’s recent paper, ((Endresen, D. (2010). Predictive Association between Trait Data and Ecogeographic Data for Nordic Barley Landraces Crop Science, 50 (6) DOI: 10.2135/cropsci2010.03.0174)) by the author himself.
Focused Identification of Germplasm (FIGS, Mackay and Street, 2004) is a new method to select plant genetic resources for the improvement of food crops. A recent paper in Crop Science (Endresen, 2010) describes how climate data (derived from the WorldClim dataset, Hijmans et al,. 2005) for the original collecting site for 14 Nordic barley landraces was successfully correlated to 5 out of 6 morphological traits with a multiway regression method (N-PLS). This result indicates that the researcher or crop breeder faced with the world’s genebank collections of plant genetic resources could use climate data as a proxy to more efficiently find material with a particular, desired trait property, even when the trait itself is not measured for most of the genebank samples. Another obvious use case would be to apply the FIGS method to learn the ecogeographic signature (calibrate a computer model) for a particular crop trait and then next apply this computer model to identify likely locations to visit for collecting new germplasm to fill gaps and complete the genebank collection (Jarvis et al., 2003; and Jarvis et al., 2005). This last use case for the FIGS strategy would be a natural extension of the ecological niche modeling methods to estimate species distributions. ((Which, coincidentally, are used as the backbone of another just-published paper by some of these same authors.))
The growing size of the genebank collections has been quoted as a problem for the efficient use of these collections (see for example Mackay, 1995). The growing size of genebank collections, together with the common lack of important descriptive data, was one of the arguments for the introduction of the core selection method by Frankel and Brown way back in 1984. The available relevant genebank accessions for a given project are often much more numerous than the capacity to evaluate them (field land area, laboratory capacity or human resources). But the lack of important descriptive data on the genebank accessions is often a limitation for deriving a suitable smaller subset of accessions, such as a core. The FIGS method can be used to try to predict missing descriptive data in genebank collections, as long as they are geo-referenced.
It is however important to be aware that the FIGS models are computer simulations and should of course always be confirmed by experimental work with the genebank accessions in the field or laboratory. It is also important to be aware of the limitations of the FIGS method in modelling the explanation for the trait expression from the ecogeographic dataset only. Important climatic variables that could explain the geographic distribution of a trait might be missing from the data analysis. Improved availability online of large-scale ecogeographic datasets, like for example the WorldClim dataset, might gradually help to improve this limitation.
And not the least when working with cultivated material (landraces), the adaptive development of the crop trait might be more dominantly explained by the breeding decisions made by the farmer. For more modern cultivated material there is in fact no appropriate location of origin, as the breeding lines are often the complex result of crossing between genetic resources from very many different source locations.
The FIGS computer model is of course not intended to replace the valuable expert knowledge held by the crop breeders and genebank curators. An expert on the crop or trait in question would be in the best position to evaluate the FIGS prediction to make corrections and additions. The results from the FIGS prediction, together with the corrections and additions from the crop expert, would next guide the development of the smaller subset of accessions. The size of the smaller subset could be limited by the capacity by the size of the available field area, laboratory capacity, or by the project funding available for human resources.
Continue reading “Links between trait and ecogeographic data found for Nordic barley landraces”
Nibbles: Wild Hordeum, Barley landraces, Funny cucumber, Dogs, Wild Manihot, Taxonomy, ABS, Capsicum farmer selection, Bulgarian genebank
- Crop wild relatives from genebank in use shock.
- Landraces from same genebank in use shock. Hopefully a full blog post is coming soon from the author himself.
- Would you eat this cucumber?
- Dog evolution, again.
- New wild cassava species found.
- Thank goodness for our name-based bioinformatics infrastructure, eh?
- The history of benefit sharing deconstructed. Nothing on ITPGRFA?
- Mexican chili farmers maintain rather than direct with their seed selection.
- My genebank is bigger than your genebank!
Mashing up banana wild relatives
Over at the Vaviblog is a detailed discussion (though not nearly as detailed as the paper) of a new paper outlining a new theory for the origin of the cultivated banana. ((De Langhe, E., Hribova, E., Carpentier, S., Dolezel, J., & Swennen, R. (2010). Did backcrossing contribute to the origin of hybrid edible bananas? Annals of Botany DOI: 10.1093/aob/mcq187))
Edible bananas have very few seeds. Wild bananas are packed with seeds; there’s almost nothing there to eat. So how did edible bananas come to be cultivated? The standard story is that some smart proto-farmer saw a spontaneous mutation and then propagated it vegetatively. Once the plant was growing, additional mutants would also be seen and conserved. In fact this “single-step domestication” is considered the standard story for many vegetatively-propagated plants, such as potato, cassava, sweet potato, taro and yam. And while it may be true for those other crops, evidence is accumulating that it may not be the whole story for bananas.
Leaving the details aside, De Langhe and his colleagues propose that instead of a single step, at least two were involved, with a proto-cultivated banana back-crossing with one of its wild relatives and then being seen by the proto-farmer as an improvement to be added to her proto-portfolio of agricultural biodiversity. Something very like that is going on today among cassava farmers, for example; they allow volunteer seedlings, the product of sexual reproduction between already favoured clones and wild relatives, to flourish in their fields and then select among them. ((Pujol, B., Mühlen, G., Garwood, N., Horoszowski, Y., Douzery, E., & McKey, D. (2005). Evolution under domestication: contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives New Phytologist, 166 (1), 305-318 DOI: 10.1111/j.1469-8137.2004.01295.x)) Banana farmers could easily have done the same.
To quote again from The Vaviblog:
The big question, of course, is “what does any of this matter?”. And the surprise is that it really does. Banana breeding is difficult at the best of times; no seeds, no pollen, you can imagine. But if the backcross hypothesis is true, then the current approach to banana breeding, which De Langhe et al. describe as “substituting an A genome allele by an alternative derived from a AA diploid source of resistance or tolerance to biotic and abiotic stress”, might be misguided. If the chromosomes are not “pure” A or B, and if backcrosses were involved in the origin of banana varieties, maybe breeders should look again at some of the diploid offspring from their crosses and see whether they could be further backcrossed to come up with types that are more use to farmers.
Now, what I really need is for one of the handful of people who really understand this stuff to tell me where I’ve misunderstood it.
Nibbles: Amazon agriculture, Livestock conservation, Chestnut redux, COP 10, Stone Age flour
- More on that thing about how the Amazon was once pullulating with people. And why.
- Why conserve livestock genetic resources. And one possible way to do it.
- The American people are bringing back the American chestnut.
- COP-watchers, something to amuse yourselves with if things get dull.
- Even Neanderthals understood the benefits of a diverse diet. Though not, perhaps, of jewellery.