- Global dispersal and adaptive evolution of domestic cattle: a genomic perspective. The scope of adaptation is pretty amazing, and has been aided by introgression from wild relatives.
- The genomic natural history of the aurochs. Which is just as well because the initial diversity of the domesticate was probably rather limited, at least in Europe.
- The Population History of Domestic Sheep Revealed by Paleogenomes. Early domesticated sheep genomes were pretty dynamic too, sometimes in parallel with shepherds and sometimes not.
- Late pre-Hispanic fog oasis settlements and long-term human occupation on the Peruvian central coast from satellite imagery. No cattle or sheep in pre-Hispanic lomas, but plenty of camelids and crops.
- American sweet potato and Asia-Pacific crop experimentation during early colonisation of temperate-climate Aotearoa/New Zealand. One of those crops was in Aotearoa by the 14th century, which is amazing.
- Musa species in mainland Southeast Asia: From wild to domesticate. Even the very wild species are affected by human use.
- Landscape genomics reveals genetic signals of environmental adaptation of African wild eggplants. Environment is not the main driver of selection, but still pretty important and thus useful in breeding. Kinda like cattle?
- Current status of global conservation and characterisation of wild and cultivated Brassicaceae genetic resources. Gotta conserve those wild relatives probably though, if they are to be used.
- Genome-wide assessment of genetic variation and population structure in cultivated vanilla from Madagascar. The results of a breeding programme 80 years ago involving wild relatives can be seen in the current structure of diversity.
Brainfood: Heraclitus, Cocoyam, Pollen, Dry chain, DSI, Global Biodiversity Framework
- Will a plant germplasm accession conserved in a genebank change genetically over time? Sure, change is inevitable, but it can be minimized, and some can be accepted.
- Cocoyam (Xanthosoma sagittifolium (L.) Schott) genetic resources and breeding: a review of 50 years of research efforts. Conventional breeding, based on inducing flowering, is possible, but will require more international exchange of germplasm. I hope someone is saving the seeds.
- Pollen banking is a critical need for conserving plant diversity. Even if it changes genetically over time.
- Applications of dry chain technology to maintain high seed viability in tropical climates. You’ve got to dry your seeds fast and hard. Probably your pollen too, come to that.
- Harmonize rules for digital sequence information benefit-sharing across UN frameworks. The big question is, should there be a single trigger point for monetary benefits, or separate ones for each treaty? At least the sequences do not change over time. But what about if the accessions from which they are derived do?
- Involving citizens in monitoring the Kunming–Montreal Global Biodiversity Framework. Yes, let’s get citizens to help us monitor all that change.
Brainfood: Beverage edition
- Crop-to-wild gene flow in wild coffee species: the case of Coffea canephora in the Democratic Republic of the Congo. DNA bits diagnostic of domesticated coffee are finding their way into wild rainforest populations, but not all that much.
- The genome and population genomics of allopolyploid Coffea arabica reveal the diversification history of modern coffee cultivars. Diversity was already pretty low in pre-domestication wild arabica, and continued going downhill after that. Time to re-synthesize the crop, I say.
- Beyond the Orthodoxy: An Overview of the Potential of ‘Other’ Coffee Species for Crop Use and their Associated Challenges. All well and good, but don’t forget there’s more to coffee than just arabica and robusta.
- Advancing Coffee Genetic Resource Conservation and Exchange: Global Perspectives and Strategies from the ICC 2024 Satellite Workshop. Time to properly secure all coffee diversity in genebanks, and that includes sorting out ABS.
- Expanding the cacao group: three new species of Theobroma sect. Herrania (Malvaceae: Byttnerioideae) from the Western Amazon Basin. Plenty of “other” cacao species too, and more coming.
- Seed morphometrics unravels the evolutionary history of grapevine in France. There was wild-domesticate geneflow in early grapevines in France as well as in robusta coffee in the DRC, and you don’t need to trace bits of DNA to prove it.
- Characterization and analysis of a Commiphora species germinated from an ancient seed suggests a possible connection to a species mentioned in the Bible. Thousand-year-old seed is a distinct and possibly long-lost species of myrrh. Which ok is not a beverage but still vaguely liquid, at least initially.
- Sesame, an Underutilized Oil Seed Crop: Breeding Achievements and Future Challenges. Ok, since we’re doing liquid-producing crops, let’s include this review of sesame improvement. Lots of wild species to use. No word on wild-domesticate geneflow though.
Brainfood: EU landraces, EU GIs, Citizen fruit scientists, Nordic potatoes, Czech wheat, German wheat, Wild Brassica collecting, Chinese & European soybeans, Italian goats
- Landrace in situ (on-farm) conservation: European Union achievements. Lots of organizations and farmers are conserving landraces in Europe, in lots of ways, and pretty successfully, but the most sustainable way to do so would be to decrease barriers to their marketing, in particular in the context of organic agriculture.
- An assessment of the implementation of the EU policy for conservation varieties from 2009 to 2023 and its relationship to Geographical Indications. Few European GIs use conservation varieties (i.e. landraces), but this should, and probably will, change.
- New citizen science initiative enhances flowering onset predictions for fruit trees in Great Britain. Imagine doing this for European landraces.
- Genetic markers identify duplicates in Nordic potato collections. Ooops, some alleged landraces in European genebanks turn out to be old improved varieties.
- Curation of historical phenotypic wheat data from the Czech Genebank for research and breeding. You need data on all those landraces if people are going to use them. Citizen scientists might help, I guess.
- Trait-customized sampling of core collections from a winter wheat genebank collection supports association studies. But you need to use that data to create subsets first, and you can do that in lots of different ways, for different purposes: let the German genebank show you how.
- Collecting Mediterranean wild species of the Brassica oleracea group (Brassica sect. Brassica). Even in Europe some gap-filling collecting is still necessary.
- A comparison of Chinese wild and cultivar soybean with European soybean collections on genetic diversity by Genome-Wide Scan. Even breeders in the soybean center of diversity might find material from Europe’s genebanks useful.
- Can Sustainability and Biodiversity Conservation Save Native Goat Breeds? The Situation in Campania Region (Southern Italy) between History and Regional Policy Interventions. Conservation livestock breeds, anyone?
Nibbles: CWR double, Banana threats, Banana collecting, Rice breeding, Cassava breeding, SADC livestock genebank, Community seedbank, Sunflower mapping, Restoration
- Why we need crop wild relatives.
- No, really, we need crop wild relatives.
- The banana is in trouble.
- Which is why we need to conserve banana wild relatives and landraces.
- Lots of wild relatives are conserved in the IRRI genebank mentioned in this Guardian article on breeding low glycemic index and high protein rice. Some of them may even have been used in this work. May look that up one day.
- I doubt that IITA used wild relatives in breeding these high quality cassava varieties, but there’s always a first time, and there may even be some in its genebank. I should probably look but I don’t have time for this rabbit hole today.
- And livestock get conserved in genebanks too, though not as much as crops. I’m really not sure how many livestock wild relatives are in the world’s genebanks, but my guess is not many.
- Farmers conserve crop (and livestock) diversity too, of course. And sometimes even their wild relatives.
- It’s amazing what can be done from space to figure out what farmers are growing. This is an example of sunflower in Ukraine, but one day we’ll even be able to locate crop wild relatives, I’m sure.
- To finish off, a reminder that we need conserved seed of wild species for more than just breeding: restoration too.