- A New Methodological Approach to Detect Microcenters and Regions of Maize Genetic Diversity in Different Areas of Lowland South America. Multiple disciplines identify 4 microcenters of maize diversity in the lowlands of South America.
- Historical Routes for Diversification of Domesticated Chickpea Inferred from Landrace Genomics. Genomics identifies both Indian and Middle Eastern traces in Ethiopian chickpeas.
- Crop wild relatives in Lebanon: mapping the distribution of Poaceae and Fabaceae priority taxa for conservation planning. Spatial analysis identifies a couple of key ex situ and in situ conservation areas for CWR in Lebanon.
- Analysis of gaps in rapeseed (Brassica napus L.) collections in European genebanks. Spatial analysis identifies a few key ex situ and in situ conservation areas for rapeseed wild relatives in Europe.
- Genomic and population characterization of a diversity panel of dwarf and tall coconut accessions from the International Coconut Genebank for Latin America and Caribbean. Characterization of various sorts identifies different Atlantic and Pacific coconut genepools in the Western Hemisphere.
- Pleistocene-dated genomic divergence of avocado trees supports cryptic diversity in the Colombian germplasm. Genomics identifies a uniquely Colombian avocado genepool.
- Analysis of >3400 worldwide eggplant accessions reveals two independent domestication events and multiple migration-diversification routes. Genomics identifies separate Southeast Asia and Indian areas of domestication, and limited exchange between them.
- Population genomics identifies genetic signatures of carrot domestication and improvement and uncovers the origin of high-carotenoid orange carrots. Genomics identifies wester-central Asia as the area of carrot domestication in the Early Middle Ages, and western Europe as the place where the orange variant was selected in the Renaissance.
- A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Pangenomics identifies a gene in wild Kordofan melons as promoting the accumulation of sugar in watermelon.
- Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Pangenomics identifies south central China as the primary centre of origin of the genus Citrus.
- Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Pangenomics identifies wild species from North and Central America as having lots of genes for abiotic stress response, but also fewer transposable elements.
- Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Pangenomics identifies the key genes and structural variations associated with pearl millet accessions from the most hot and dry places.
- Dark side of the honeymoon: reconstructing the Asian x European rose breeding history through the lens of genomics. Genomics and other data identifies a shift from a European to a mainly Asian genetic background in cultivated roses during the 19th century, leading to a narrowing of genetic diversity.
Nibbles: Heirloom mixology, Renaissance breeding, Heirloom watermelon, Heirloom apples, British horses, Ancient grapes & wine, Potato cryo, Arboretum, Svalbard Global Seed Vault, Rice breeding
- A self-described seed mixologist calls for a science fiction, rather than historical, approach to growing heirloom varieties. Excellent reading.
- The Renaissance approach to genetic mixology explained in a new book The Perfection of Nature.
- Sometimes, though, you just want a good old watermelon.
- Or a good old apple.
- Or indeed ‘the Swiss army knife of equines.’
- Or you want to know what ancient people ate and drank.
- So it’s a good thing we have genebanks, genebanks, genebanks…
- Including for rice.
Brainfood: Silvopastoral systems, Livestock sustainability, Brachiaria in Brazil, European haymaking, German Black Pied cattle, Mallards, Pollinators, Metabarcoding
- Global meta-analysis reveals overall benefits of silvopastoral systems for biodiversity. They’re not bad on their own, but the best thing for biodiversity would be to integrate silvopastoral systems with protected areas.
- Priority areas for investment in more sustainable and climate-resilient livestock systems. India, Brazil, China, Pakistan and Sudan, apparently.
- Farming cattle in the tropics: Transnational science and industrializing pastures in Brazil. But would investment in Brachiaria-based silvopastoral systems in Brazil be a good thing? I guess it depends.
- Country Perspectives on Hay-Making Landscapes as Part of the European Agricultural Heritage. No Brachiaria in sight.
- Genomic diversity and relationship analyses of endangered German Black Pied cattle (DSN) to 68 other taurine breeds based on whole-genome sequencing. It has a small population, but this ancestor of the Holstein is still pretty diverse. No word on whether it likes Brachiaria.
- The meaning of wild: Genetic and adaptive consequences from large-scale releases of domestic mallards. “Wild is not singular.” Let that sink in while you contemplate your mallard-based silvopastoral system.
- Key tropical crops at risk from pollinator loss due to climate change and land use. I’m sure the right silvopastoral systems would be great for pollinators.
- eDNA metabarcoding of avocado flowers: ‘Hass’ it got potential to survey arthropods in food production systems? Yes it does. So now we can monitor the performance of those silvopastoral systems pretty easily.
RIP Mankombu Sambasivan Swaminathan
At the International Congress of Genetics in New Delhi in 1983, I stressed the need for a conservation continuum, beginning with revitalizing conservation of domesticated plants by farm families in all countries, and extending to the establishment of an international genetic resource repository maintained under permafrost conditions. Since then, thanks to the spread of participatory breeding and knowledge-management systems involving scientists and local communities, on-farm conservation and gene banks have become integral parts of national biodiversity conservation strategies. For example, there are now over 125,000 genetic strains of rice, of which over 100,000 are in a cryogenic gene bank maintained by the International Rice Research Institute (IRRI) in the Philippines. This gene pool is invaluable for adapting one of the world’s most important cereal grains to the consequences of global climate change.
Si monumentum requiris circumspice.
From farm to bar to genebank
Meet Tom Barse, a Maryland farmer and brewer:
We used to sell hops to local breweries until we opened Milkhouse Brewery at Stillpoint Farm, in 2013, where we now use all of the hops we grow. A few years back, at an agricultural conference at Linganore Wine Cellars, I met Dr. Ray Ediger, a retired veterinarian living in Utica in Frederick County. He told me about an old hop plant growing on his farm that had been there for years, and wanted to know if I was interested in checking it out.
Tom continues, “I went out to Ray’s farm and was amazed to see this enormous hop plant that had taken over his chicken coop, fence, and other farm buildings. Fellow hop growers Brad Humbert, Del Hayes, and I went out and picked some of the hops in early October – which is extremely late for a harvest in Maryland.
…
We thought we had something pretty cool, so working with Janna Howley and Kevin Atticks at Grow and Fortify we were able to get a USDA/MDA grant to research the hop and make beer. We donated the germplasm to the USDA plant bank and have received a USDA PI number (plant introduction).
That PI number is 700807, and you can see it right there on the beer bottles.
I don’t think I’ve ever seen a genebank accession number quoted on a commercial product like that. Thanks to Dr Peter Bretting of USDA for the headsup.
LATER: Oh yes I have :)