- Global and local perspectives on food security and food systems. Six experts have their say on how to transform food systems, and dietary diversity seems to be a common (though not a universal) theme. Let’s dig a little deeper into that.
- Global estimation of dietary micronutrient inadequacies: a modelling analysis. A lot of people could probably do with eating more fruits and vegetables, for example.
- Plant-based diets–impacts of consumption of little or no animal-source foods on human health. Some people could probably do with eating more animal-source foods, though. Well, that’s diversity too.
- The association between crop diversity and children’s dietary diversity: multi-scalar and cross-national comparisons. In some places, growing more diverse crops is associated with eating more diverse diets; in other places, not so much. Damn you, nuance!
- Revive and Thrive: Forgotten Crops for Resilient Food Systems. Fortunately, there are more advantages to growing more diverse crops than its possible positive effect on diet diversity…
- Why traditional rural landscapes are still important to our future. …yes indeed there are, especially if they are grown in diverse landscapes.
- Nurturing gastronomic landscapes for biosphere stewardship. The hallowed craft of cooking can help realize those advantages.
- NUS so fast: the social and ecological implications of a rapidly developing indigenous food economy in the Cape Town area. However, growing more diverse crops can have downsides, celebrity chefs etc. notwithstanding.
- Assessing realized genetic gains in biofortified cassava breeding for over a decade: Enhanced nutritional value and agronomic performance. Breeding crops for higher nutritional value comes at a yield price. Which presumably, in some places, for some people, may be worth paying, give all the uncertainties above?
- The future is fermented: Microbial biodiversity of fermented foods is a critical resource for food innovation and human health. Or, we could all ferment more. And maybe get drunk.
Brainfood: EU landraces, EU GIs, Citizen fruit scientists, Nordic potatoes, Czech wheat, German wheat, Wild Brassica collecting, Chinese & European soybeans, Italian goats
- Landrace in situ (on-farm) conservation: European Union achievements. Lots of organizations and farmers are conserving landraces in Europe, in lots of ways, and pretty successfully, but the most sustainable way to do so would be to decrease barriers to their marketing, in particular in the context of organic agriculture.
- An assessment of the implementation of the EU policy for conservation varieties from 2009 to 2023 and its relationship to Geographical Indications. Few European GIs use conservation varieties (i.e. landraces), but this should, and probably will, change.
- New citizen science initiative enhances flowering onset predictions for fruit trees in Great Britain. Imagine doing this for European landraces.
- Genetic markers identify duplicates in Nordic potato collections. Ooops, some alleged landraces in European genebanks turn out to be old improved varieties.
- Curation of historical phenotypic wheat data from the Czech Genebank for research and breeding. You need data on all those landraces if people are going to use them. Citizen scientists might help, I guess.
- Trait-customized sampling of core collections from a winter wheat genebank collection supports association studies. But you need to use that data to create subsets first, and you can do that in lots of different ways, for different purposes: let the German genebank show you how.
- Collecting Mediterranean wild species of the Brassica oleracea group (Brassica sect. Brassica). Even in Europe some gap-filling collecting is still necessary.
- A comparison of Chinese wild and cultivar soybean with European soybean collections on genetic diversity by Genome-Wide Scan. Even breeders in the soybean center of diversity might find material from Europe’s genebanks useful.
- Can Sustainability and Biodiversity Conservation Save Native Goat Breeds? The Situation in Campania Region (Southern Italy) between History and Regional Policy Interventions. Conservation livestock breeds, anyone?
Nibbles: CWR double, Banana threats, Banana collecting, Rice breeding, Cassava breeding, SADC livestock genebank, Community seedbank, Sunflower mapping, Restoration
- Why we need crop wild relatives.
- No, really, we need crop wild relatives.
- The banana is in trouble.
- Which is why we need to conserve banana wild relatives and landraces.
- Lots of wild relatives are conserved in the IRRI genebank mentioned in this Guardian article on breeding low glycemic index and high protein rice. Some of them may even have been used in this work. May look that up one day.
- I doubt that IITA used wild relatives in breeding these high quality cassava varieties, but there’s always a first time, and there may even be some in its genebank. I should probably look but I don’t have time for this rabbit hole today.
- And livestock get conserved in genebanks too, though not as much as crops. I’m really not sure how many livestock wild relatives are in the world’s genebanks, but my guess is not many.
- Farmers conserve crop (and livestock) diversity too, of course. And sometimes even their wild relatives.
- It’s amazing what can be done from space to figure out what farmers are growing. This is an example of sunflower in Ukraine, but one day we’ll even be able to locate crop wild relatives, I’m sure.
- To finish off, a reminder that we need conserved seed of wild species for more than just breeding: restoration too.
Brainfood: Diverse ecologists, Wild vs cultivated, Ecosystem services, Indigenous people, Mixtures, On-farm trees, Monitoring protected areas, Social media & protected areas, Wild harvesting, Land sparing vs sharing, Agroecology & plant health, Wild vs cultivated
- On the importance of diversity in ecological research. Diversity of the research teams, that is. This should apply to everything that follows.
- Adapting wild biodiversity conservation approaches to conserve agrobiodiversity. The main gap seem to be in the area of “payment for system services.” Agrobiodiversity could learn from biodiversity there.
- The Role of Crop, Livestock, and Farmed Aquatic Intraspecific Diversity in Maintaining Ecosystem Services. And there’s a lot to pay for, apparently.
- No basis for claim that 80% of biodiversity is found in Indigenous territories. There are better numbers for the undoubted (but alas still unrewarded) importance of Indigenous people for biodiversity conservation.
- Plant diversity decreases greenhouse gas emissions by increasing soil and plant carbon storage in terrestrial ecosystems. Huge meta-analysis says plant mixtures are better than monocultures for C storage. Maybe someone should pay for that?
- Food-sourcing from on-farm trees mediates positive relationships between tree cover and dietary quality in Malawi. And some of those trees will be wild.
- Delivering Systematic and Repeatable Area-Based Conservation Assessments: From Global to Local Scales. Actually, the Digital Observatory for Protected Areas (DOPA) could also usefully be applied to agricultural biodiversity.
- Applying deep learning on social media to investigate cultural ecosystem services in protected areas worldwide. Well, of course, it was only a matter of time. And the above comment also applies.
- Does long-term harvesting impact genetic diversity and population genetic structure? A study of Indian gooseberry (Phyllanthus emblica) in the Central Western Ghats region in India. AI will only get you so far. But it would be interesting to see if AI could have predicted these results. More training dataset needed, I suspect.
- Agrobiodiversity conservation enables sustainable and equitable land sparing. Intensifying agriculture can be good for land sparing, but its sustainability depends on land sharing. Nice way to escape the dichotomy.
- Towards an agroecological approach to crop health: reducing pest incidence through synergies between plant diversity and soil microbial ecology. I guess this is an example of the above.
- Are agricultural commodity production systems at risk from local biodiversity loss? Have you not been listening?
Brainfood: Pacific plant use, Rapa Nui crops, E African crops, Cotton domestication, Fertile Crescent Neolithic, Dutch Neolithic, S Italy crops, Rice domestication, Maize domestication
- Human dispersal and plant processing in the Pacific 55 000–50 000 years ago. There was more to the peopling of the Pacific than seafaring.
- Identification of breadfruit (Artocarpus altilis) and South American crops introduced during early settlement of Rapa Nui (Easter Island), as revealed through starch analysis. Though seafaring took these people all the way to South America, it sees.
- Early agriculture and crop transitions at Kakapel Rockshelter in the Lake Victoria region of eastern Africa. A bit like Rapa Nui, Lake Victoria got crops from both west and east over time.
- Cotton and post-Neolithic investment agriculture in tropical Asia and Africa, with two routes to West Africa. Funny they didn’t find cotton at the Lake Victoria site.
- Drawing diffusion patterns of Neolithic agriculture in Anatolia. Itinerant expert harvesters spread agriculture into Anatolia. Maybe around Africa too, who knows.
- Early animal management in northern Europe: multi-proxy evidence from Swifterbant, the Netherlands. Early farmers in northern Europe managed separate herds of cattle in different ways alongside crops. What, itinerant expert livestock herders too?
- Introduction, spread and selective breeding of crops: new archaeobotanical data from southern Italy in the early Middle Ages. Sicily is a bit like Rapa Nui and Lake Victoria.
- Rice’s trajectory from wild to domesticated in East Asia. Rice domestication pushed back to about the same time as the Fertile Crescent. No word on the role of expert harvesters.
- Archaeological findings show the extent of primitive characteristics of maize in South America. Maize arrived in lowland South America in a pre-domesticated state, and stayed like that for a long time. That’s a long way for expert harvesters to go.