- Embracing new practices in plant breeding for agroecological transition: A diversity-driven research agenda. Plant breeding for agroecology will need access to locally-adapted plant diversity, sure, but also the involvement of a diversity of stakeholders and the use of a diversity of co-design strategies.
- Conservation and Utilization of Wheat Genetic Resources in Afghanistan Expanded with the Homecoming Wheat Landraces Collected Half a Century Ago. The above could also be said of wheat breeding in Afghanistan. Fingers crossed.
- Blueprints for sustainable plant production through the utilization of crop wild relatives and their microbiomes. Oh, wait, breeders (agroecological and otherwise) will also need the diversity of microbiomes associated with crop wild relatives.
- A defined microbial community reproduces attributes of fine flavour chocolate fermentation. Oh, wait, we will also need the diversity of the microbes involved in fermentation, at some point.
- Genomic data define species delimitation in Liberica coffee with implications for crop development and conservation. It might help if we knew how many species made up a crop in the first place. In the case of Liberica coffee, it turns out to be 3. No word on the microbiomes involved.
- Assessment of genetic diversity and population structure of Malus sieversii and Malus niedzwetzkyana from Kazakhstan using high-throughput genotyping. It would also help to know where interesting diversity was concentrated within crop wild relatives. In apples, it’s not necessarily the ancestor.
- The National Plant Germplasm System cotton collection—a review of germplasm resources, phenotypic characterization, and genomic variation. Lots of morphological characterization and agronomic evaluation, not so much molecular data, but increasing. No word on the microbes.
- Establishing a genomic-driven conservation of a cattle genetic resource: the case of the Parmigiano-Reggiano cheese iconic breed. In contrast, these guys have genotyped practically a whole breed. But yeah, no microbes.
- Phased chromosome-level assembly provides insight into the genome architecture of hexaploid sweetpotato. The contributions of different wild relatives to the sweetpotato genome are to be found intertwined along chromosomes rather than restricted to subgenomes. Unclear what that will mean to agroecologial breeders.
- Harnessing Green Revolution genes to optimize tomato production efficiency for vertical farming. Agroecological breeders unavailable for comment.
Brainfood: Defining domestication, Pig domestication, Archaeological orphan crops, Levant Neolithic causes, Altiplano agricultural origins, Irish cattle, Islamic Green Revolution, Ancient fish DNA, Ancient Chinese rice
- A universally applicable definition for domestication. Domestication is just evolution in anthropogenic environments.
- Early evidence for pig domestication (8,000 cal. BP) in the Lower Yangtze, South China. Evolution in anthropogenic environments can follow different pathways.
- Orphan crops of archaeology-based crop history research. Some crops are also neglected by archaeologists. Maybe because they weren’t domesticated enough?
- Catastrophic fires and soil degradation: possible association with the Neolithic revolution in the southern Levant. Domestication was caused by lightning.
- Altiplano agricultural origins was a process of economic resilience, not hardship: Isotope chemistry, zooarchaeology, and archaeobotany in the Titicaca Basin, 5.5-3.0 ka. Farming was not caused by anything so traumatic as lightning on the Altiplano.
- Changing human-cattle relationships in Ireland: a 6000-year isotopic perspective. Open land management of cattle in the Iron Age led to their central position in Irish culture. Maybe lightning was involved in clearing the land?
- Re-thinking the ‘Green Revolution’ in the Mediterranean world. The impact of the Islamic Green Revolution was down to more than just new crops and irrigation. Bit like the modern Green Revolution then?
- Roman Atlantic garum: DNA confirms sardine use and population continuity in north-western Iberia. You can characterize and compare old fish remains based on the DNA that survived fermentation at the bottom of ancient salting vats.
- Exploration of crop germplasm resources knowledge mining in Chinese ancient books: a route toward sustainable agriculture. You can characterize and compare old rice varieties based on the descriptions that survived in ancient chronicles. Maybe pig varieties too?
Brainfood: EcoregionsTreeFinder, Microbe niches, Herbarium phenology, Green Status Index of Species Recovery, Feral pigs, Trade & biodiversity, African cereal self-sufficiency, Plant protection, Ugandan seed systems, Grasspea breeding, Indigenous knowledge
- EcoregionsTreeFinder—A Global Dataset Documenting the Abundance of Observations of > 45,000 Tree Species in 828 Terrestrial Ecoregions. The right native tree for your ecoregion of choice. Which, given lots of the stuff below, is good to know. Oh, and BTW, there’s also the Agroforestry Species Switchboard.
- Modelling the distribution of plant-associated microbes with species distribution models. Would be cool to mash up with the above one day.
- The promise of digital herbarium specimens in large-scale phenology research. Something else you can use herbarium specimens for, if you’re careful.
- A global indicator of species recovery. The Green Status Index of Species Recovery, no less. Herbaria surely involved again.
- Valorization of feral pigs in the tropics, from the genetic characterization to the re- domestication. Wish there was a Green Status Index of Breed Recovery.
- Global staple food trade exacerbates biodiversity loss: a network perspective. Soybeans are messing with the Green Status Index of Species Recovery of lots of species, I suspect.
- Prospects for cereal self-sufficiency in sub-Saharan Africa. Prospects for self-sufficiency are not bad, but will require yield increases if the Green Status Index of Species Recovery is not going to take a hit.
- Protecting crops with plant diversity: Agroecological promises, socioeconomic lock-in, and political levers. Agroforestry and diverse landscapes are best for pest control, but cultivar mixtures are worth a try too. Wonder what they will do for cereal self-sufficiency in Africa. I lot, I bet, if given a chance.
- The dynamics of crop diversity and seed use in the context of recurrent climate shocks and poverty: Seasonal panel data evidence from rural Uganda. Farmers use crop diversity to cope with climate change, and wealthy farmers do it better. Pest control too, maybe?
- Understanding Farmer Preferences to Guide Crop Improvement: The Case of Grasspea in Ethiopia. Breeders should provide jam today and jam tomorrow.
- Crop diversity trends captured by Indigenous and local knowledge: introduction to the symposium. Indigenous and local knowledge can help you keep track of all of the above.
Brainfood: Protein, AnGR, Indian chickens, US Mashona cattle, Asiatic wild ass, European Neolithic pigs, Low methane pastures, American dogs, Baker’s yeast, Lager yeast
- Links between protein-source diversity, household behavior, and protein consumption inadequacy in the Indian rural semi-arid tropics. More diversity in protein sources, including livestock, would probably lead to more consumption, especially if linked to more education on its importance.
- Integrating Local and Indigenous Animal Genetic Resources for Food and Agriculture (LIAnGRFA) into global biodiversity governance. We wont keep livestock diversity for long if we don’t integrate its conservation into existing mechanisms.
- Introduction to chicken genetic resources of India: a comprehensive review. India seems to agree with the above, at least with regards to its chickens, and is doing something about it.
- Out of Africa: genetic characterization and diversity of Mashona cattle in the United States. Something will certainly have to be done about the Mashona in the US if its interesting but limited diversity is to survive.
- Impacts of Climate-Land Dynamics on Global Population and Sub-Populations of a Desert Equid. Ditto for the Asiatic wild ass, although I suppose its contribution to human protein supply is pretty safe.
- Archaeogenomic insights into commensalism and regional variation in pig management in Neolithic northwest Europe. Even Neolithic European farmers managed the diversity of their livestock, pigs in this case.
- Agronomic performance, herbage quality, methane yield and methane emission potential of pasture mixtures. All those diverse livestock might as well be eating the sort of feed that leads to lower methane emissions.
- Ancient dog mitogenomes support the dual dispersal of dogs and agriculture into South America. Domestic dogs were taken into South America along with maize, according to their genetic structure. No word on whether they were used as protein sources.
- Footprints of Human Migration in the Population Structure of Wild Baker’s Yeast. Saccharomyces cerevisiae is something else whose genetic structure was heavily influenced by early farmers, and indeed continues to be by modern farming.
- Revealing the ancient origins of blonde beers: Phylogeography and phylogenetics of cryotolerant fermentative yeast Saccharomyces eubayanus from pre-Hispanic pottery in Northwestern Patagonia, Argentina. Did those early South American farmers ferment their maize, I wonder? They had the yeast for it, which eventually made it to Europe and gave us lager. And no, beer is not a good protein source.
We knead oil
Jeremy’s latest newsletter has agrobiodiversity-adjacent snippets on the re-making of an ancient bread in Turkey and on the “oenification of olive oil.” Plus a thing on oysters which is maybe not so adjacent but is also fun and sports a title that is worth the price of admission on its own. Read it.