Sometimes it takes some personal connection to get me motivated enough to try and understand something a little more fully. Laziness, I guess. Anyway, for example, I vaguely knew about the gluten seed storage proteins of wheat and the coeliac disease they cause in about 1% of the population. But I decided to delve a little deeper only when an old friend I hadn’t seen for a while visited today and told me that she was a sufferer, and that she needed to know how to describe the condition in italian so she wouldn’t get into trouble eating in restaurants here in Rome.
Having sorted that out, I was interested to know whether there are differences among wheat species in the “toxicity” of their glutens. You’ll remember that wheat comes in a polyploid series: diploid, tetraploids and hexaploids. And that three distinct genomes are involved: AA, BB and DD. Diploid einkorn (AA) and BB genome species got together to form tetraploid emmer and durum wheat (AABB). And these hybridized with wild diploid Triticum tauschii to make hexaploid (AABBDD) bread wheat.
It turns out that differences in gluten toxicity do exist. An analysis of the ancestral A, B and D genomes of wheat found that DNA sequences associated with 4 peptides that have been identified as triggering a response in coeliac patients are not distributed at random. For example, the B genome sequences analyzed did not reveal any of the “guilty” sequences.
On the basis of such insight, breeding strategies can be designed to generate less toxic varieties of wheat which may be tolerated by at least part of the [coelic disease] patient population.
Oh, and coeliac disease is called celiachia in italian.