- Plant domestication: setting biological clocks. Domestication changed plants’ timekeeping and made them less resilient, but there is variation among the biological clocks of different organs that could tapped in breeding.
- Plant domestication and agricultural ecologies. There have been 7 main paths to plant domestication, or commonalities in the ways that plants were domesticated by people in different parts of the world in the past: ecosystem engineering, ruderal, tuber, grain, segetal, fibre, fruit tree.
- Plants cultivated for ecosystem restoration can evolve toward a domestication syndrome. Ok, maybe 8.
- Diamonds in the Not-So-Rough: Wild Relative Diversity Hidden in Crop Genomes. The cool alleles you spotted in wild relatives may already be in cultivated genomes, and that can save breeders some time and effort.
- Finding needles in a haystack: identification of inter-specific introgressions in wheat genebank collections using low-coverage sequencing data. Ah, here they are.
- Interspecific common bean population derived from Phaseolus acutifolius using a bridging genotype demonstrate useful adaptation to heat tolerance. I guess this is an example of the time that could be saved.
- Mapping potential conflicts between global agriculture and terrestrial conservation. A third of agricultural production occurs in sites of high biodiversity conservation priority, with cattle, maize, rice, and soybean posing the greatest threat and sugar beet, pearl millet, and sunflower the lowest. No word on how many crop wild relatives are threatened, but there’s a cool online mapping tool that could I suppose be used to mash things up.
- Assessing habitat diversity and potential areas of similarity across protected areas globally. At a pinch, this could be used to identify backups for any threatened sites of high biodiversity conservation priority.
- Ex situ conservation of two rare oak species using microsatellite and SNP markers. Watch out for the creeping domestication syndrome though, if these ever get used for restoration :)
- TreeGOER: a database with globally observed environmental ranges for 48,129 tree species. Even more than all the CWRs we did. But no, I don’t know if those oaks are included…
- Ecological Niche Models using MaxEnt in Google Earth Engine: Evaluation, guidelines and recommendations. …but if not you can always work their ranges out for yourself.
Nibbles: AGRA, National security, Filipino fruits, Scuba rice, Tasteless pea, Blue Jay bean, Taiwan genebanks, Agrobiodiversity walks
- NGOs call on USAID to stop supporting AGRA. And not for the first time either.
- Report calls for US to invest more in agricultural research in support of global food security. AGRA unavailable for comment.
- A pean to the fruit trees of the Philippines. I’ll second that.
- Scuba rice comes to Africa. What took it so long?
- Apparently there’s a “wild pea plant” in India in which the flavour gene is turned off, and that’s a good thing. Going to have to look into this.
- A famous Canadian bean makes a come-back. Of course there are famous Canadian beans. More famous than that tasteless pea anyway.
- Nice piece on Taiwan’s crop genebanks. Lots of famous varieties in there no doubt.
- I really like the concept of “agrobiodiversity walks.” There should be one built around that wild tasteless pea.
Brainfood: Vanilla diversity, Moth bean diversity, Lablab genome, Wheat allergens, Strampelli, Core collections, Collection structure, ITK, Sambal diversity
- Genetic diversity of the cultivated vanilla in Madagascar. Lots of genetic groups based on SNPs, but not structured in space or environmentally, except maybe by altitude.
- Genetic diversity, population structure, and genome-wide association study for the flowering trait in a diverse panel of 428 moth bean (Vigna aconitifolia) accessions using genotyping by sequencing. NW India is a centre of diversity.
- Chromosome-level genome assembly and population genomic resource to accelerate orphan crop lablab breeding. Two domestication “events,” with the 2-seeded form originating in Ethiopia.
- Reference proteomes of five wheat species as starting point for future design of cultivars with lower allergenic potential. Einkorn is really low in potential allergens.
- Nazareno Strampelli and the first Green Revolution. And all without SNPs, GWAS, genomes or proteomes.
- Developments on Core Collections of Plant Genetic Resources: Do We Know Enough? Do we ever?
- Assessing Genetic Distinctness and Redundancy of Plant Germplasm Conserved Ex Situ Based on Published Genomic SNP Data. Looks like we may know enough for some things after all.
- An (un)common remedy to Indigenous communities’ subsistence: revisiting Traditional Knowledge Commons. As we delve deeper and deeper into the genetic diversity of collections, let’s not forget the associated Indigenous Knowledge.
- Diversity of sambals, traditional Indonesian chili pastes. Case in point? Any allergens though, I wonder?
Brainfood: Domestication syndrome, Plasticity & domestication, Founder package, Rice domestication, Aussie wild rice, European beans, Old wine, Bronze Age drugs
- Phenotypic evolution of agricultural crops. Plants have evolved to become bigger, less able to run away, and more delicious to herbivores, and breeders can use insights into that domestication process to develop an ideotype for multipurpose crops adapted to sustainable agriculture.
- The taming of the weed: Developmental plasticity facilitated plant domestication. The authors made plants less lazy, more attractive, and easier to cook — all by simply hanging out with them for a season or two. And so did early farmers.
- Revisiting the concept of the ‘Neolithic Founder Crops’ in southwest Asia. The earliest farmers in the Fertile Crescent did not do the above for just a single, standard basket of 8 crops.
- The Fits and Starts of Indian Rice Domestication: How the Movement of Rice Across Northwest India Impacted Domestication Pathways and Agricultural Stories. Rice began to be cultivated in India in the Ganges valley, moved in a semi-cultivated state to the Indus, got fully domesticated there, then met Chinese rice. No word on what else was in the basket.
- Analysis of Domestication Loci in Wild Rice Populations. Australian populations of wild rice have never been anywhere near cultivated rice, but could easily be domesticated.
- Selection and adaptive introgression guided the complex evolutionary history of the European common bean. The first introductions were from the Andean genepool, but then there was introgression from that into the Mesoamerican, and both spread around Europe. A bit like Indian meeting Chinese rice?
- Ancient DNA from a lost Negev Highlands desert grape reveals a Late Antiquity wine lineage. One thousand year old grape pits from the southern Levant can be linked to a number of modern cultivars, which could therefore be adapted to drier, hotter conditions.
- Direct evidence of the use of multiple drugs in Bronze Age Menorca (Western Mediterranean) from human hair analysis. There was probably not a single package of drug plants either.
Brainfood: 100 plant science questions, Biodiversity data, Cropland expansion double, CC & yields, Crop diversity & stability, Nutritious crops double, Feminist markets
- One hundred important questions facing plant science: an international perspective. How do we leverage existing genetic diversity to create climate-resilient crops? is only number 3 you say? I’ll take it. And in fact that broad question gets deconstructed in questions 36-71. Now, let’s see how today’s haul of papers relates to that, shall we?
- A strategy for the next decade to address data deficiency in neglected biodiversity. Well, yeah, easy one, clearly you need data to conserve the crop wild relatives that could help you breed those climate-resilient crops.
- Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Apart from anything else, that data would tell you which CWR in protected areas are threatened with cropland expansion, and said CWR could help you with breeding crops that could limit cropland expansion by increasing production on existing cropland. Could, could, could…
- Global Maps of Agricultural Expansion Potential at a 300 m Resolution. That cropland expansion might do less damage in some places than others. Still with me?
- Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Right, that’s why those CWR might come in useful. Assuming you can still find them with all that cropland expansion.
- Divergent impacts of crop diversity on caloric and economic yield stability. At the state level within the USA, crop species diversity is positively associated with yield stability when yield is measured in $ but negatively when measured in calories. Now do it for genetic diversity.
- Role of staple cereals in human nutrition: Separating the wheat from the chaff in the infodemics age. The benefits of those climate-resilient, more nutritious crops need to be better communicated.
- Simple solutions for complex problems? What is missing in agriculture for nutrition interventions. What does nutritious mean anyway?
- “Whose demand?” The co-construction of markets, demand and gender in development-oriented crop breeding. Who is it that wants those climate-resilient, nutritious crops anyway?
- Take-home message: leveraging existing genetic diversity to create climate-resilient crops might be the easy part.