- How genomics can help biodiversity conservation. Let’s find out, but let’s broaden it to use as well, shall we? On the assumption that what’s good for conservation is good for use, and vice versa.
- Genetic and genomic interventions in crop biofortification: Examples in millets. Genomics can help you get more nutritious millets, and also use millets to improve the nutritive content of other cereals too.
- Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus. Genomics can help you figure out ways to decrease the toxicity of grasspea.
- Extensive crop–wild hybridization during Brassica evolution and selection during the domestication and diversification of Brassica crops. Genomics can help you figure out the evolutionary history of crops…
- Molecular characterization of Brassica genebank germplasm confirms taxonomic identity and reveals low levels and source of taxonomic errors. …assuming you have you accessions labelled correctly that is.
- Dual domestications and origin of traits in grapevine evolution. Genomics can help you figure out the evolutionary history of crops. No, wait, we already had that one…
- Balancing grain yield trade-offs in ‘Miracle-Wheat’. Genomics can help you figure out the best phenotype in wheat.
- Focusing the GWAS Lens on days to flower using latent variable phenotypes derived from global multienvironment trials. Genomics can help you figure out the best phenotype in lentils too.
- Awned versus awnless wheat spikes: does it matter? Although actually you don’t necessarily need genomics to help you figure out the best phenotype in wheat. But let’s get back on track.
- SNP Diversity and Genetic Structure of “Rogosija”, an Old Western Balkan Durum Wheat Collection. That’s better. Genomics can help you figure out that a wheat collection can consist of distinct ecogeographic groupings.
- Repeatability of adaptation in sunflowers: genomic regions harbouring inversions also drive adaptation in species lacking an inversion. Genomics can help you figure out what’s behind local adaptation in crop wild relatives.
- Re-evaluating Homoploid Reticulate Evolution in Helianthus Sunflowers. Genomics can help you figure out the evolutionary history of crop wild relatives. Where have I heard that before?
- A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen. Genomics can help you figure out the evolutionary history of plant pathogens too. Here’s a Twitter thread from one of the authors with lots of maps to prove it.
- Honey bee populations of the USA display restrictions in their mtDNA haplotype diversity. Yeah, you guessed it, pollinators too.
- Mezcal worm in a bottle: DNA evidence suggests a single moth species. I rest my case.
Giving orphan crops an even break
Prabhu Pingali sets out the nutrition case for crop-neutral agricultural policy in an interview at Asterisk.
There’s a lot more talk about nutrition-sensitive agriculture and a lot more pronouncements about why this is important. However, most governments see this as an add-on, not a substitution. Rather than removing the existing supports or reducing the existing supports for staples, governments have just added supports for other crops. That creates some marginal improvement for some of the other crops, but your fundamentals don’t change. The crop-neutrality argument says: Treat all these crops on a level playing field and let market signals determine the supply responses.
Easier said than done, but there’s more in his chapter on Are the Lessons from the Green Revolution Relevant for Agricultural Growth and Food Security in the Twenty-First Century? in last year’s book Agricultural Development in Asia and Africa.
The dawn of farming revisited
Yeah, ok, here’s that cool map about the Fertile Crescent that I alluded to in a recent Nibble.
But do read the blog posts by Chad Mulligan the thesis of Graeber and Wengrow’s The Dawn of Everything with regards to the origins of farming Part 1 and Part 2.
In chapters six and seven of The Dawn of Everything, David Graeber and David Wengrow present a very different account of the origins of agriculture than that found most conventional history books. This account, they say, contradicts many of the assumptions made by the authors of Big History, who tend to portray farming as ineluctably leading to inequality, hierarchy, private property, violence, and centralized states.
Instead, they argue that early farming societies were no more hierarchical than their predecessors, and may have even been less violent more egalitarian than their hunter-gatherer neighbors. The imply that cultivation may have even initially began as a strategy expressly designed to avoid succumbing to the values of hierarchy and violence. They are especially critical of Yuval Noah Harari’s Russian reversal-style metaphor of “wheat domesticating us.” This, they say, is yet another “Garden of Eden-type narrative,” except with “wheat taking the place of the snake.”
Svalbard roundup
I guess by now the whole world knows that this year is the 15th anniversary of the Svalbard Global Seed Vault, that there was another deposit last week, that the number of seed samples is now over 1.2 million from 98 genebanks, and that you can take a virtual tour of the place. But it’s a slow news day…
Brainfood: Food biodiversity, Diversification, New crops, GMO maize, African livestock, Greek innovation clusters, Amazonian native cacao
- Food Biodiversity as an Opportunity to Address the Challenge of Improving Human Diets and Food Security. Biodiversity and food security can be mutually supportive, but you need education, research and inclusion, say educators and researchers.
- Achieving win-win outcomes for biodiversity and yield through diversified farming. Biodiversity and yield both win in only about a quarter of cases. But humanity does not live by yield alone, right?
- Accelerated Domestication of New Crops: Yield is Key. Ooops, looks like humanity does live by yield alone after all.
- Genetically Modified Maize: Less Drudgery for Her, More Maize for Him? Evidence from Smallholder Maize Farmers in South Africa. No, wait, man lives by yield alone, but not woman.
- Climate Change’s Impact on Agriculture and Food Security: An Opportunity to Showcase African Animal Genetic Resources. Forget GMO maize, Africa needs to develop its own agrobiodiversity…
- Friend or Foe? The Role of Animal-Source Foods in Healthy and Environmentally Sustainable Diets. …and it need not be bad for either health or the environment.
- AgriDiverCluster: An Innovative Cluster for the Utilization of Greek Biodiversity and Plant Genetic Resources. Maybe the Greeks have a way to make it not bad for either health or the environment. By vertical integration, it looks like.
- Socio-ecological benefits of fine-flavor cacao in its center of origin. Amazonian cacao farmers also seem to have a way to vertically integrate.