- Needs and strategies for breeding and sustainable use of genetic resources in Opuntia. Surely there are molecular markers for spinelessness by now?
- Teosinte confers specific alleles and yield potential to maize improvement. There are 71 QTLs associated with 24 differential traits between maize and teosinte.
- A short review on sugarcane: its domestication, molecular manipulations and future perspectives. Forget sugar or fuel, the future is vaccine production.
- SNP discovery in proso millet (Panicum miliaceum L.) using low-pass genome sequencing. Ok, but why are the South Asian accessions so different from everything else?
- Meta-analysis of qualitative and quantitative trait variation in sweet watermelon and citron watermelon genetic resources. Rob citron to pay sweet watermelon.
- Genomics-informed prebreeding unlocks the diversity in genebanks for wheat improvement. How I learned to stop worrying and love non-adapted germplasm.
- Wild Sorghum as a Promising Resource for Crop Improvement. Oooh, I like the idea of de novo domestication of Australian wild sorghum species.
- Disentangling the Genetic Diversity of Grass Pea Germplasm Grown under Lowland and Highland Conditions. Always good to have multi-locational trial data, even when n=2.
- Hybridization, missing wild ancestors and the domestication of cultivated diploid bananas. Let the search for the 3 unknown wild ancestors begin!
- Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. If only Mendel had worked on wild peas too.
- Genetic diversity and population structure analyses of South African Bambara groundnut (Vigna subterranea [L.] Verdc) collections using SNP markers. Two heterotic groups to play around with.
The happiness of visiting genebanks
Sorry for the relative silence lately. Work intervened, involving a longish trip to Bhutan, to check out their national genebank. The specific project in question is the one we call BOLD. Check my insta for the inevitable, and inevitably classy, pix.
Brainfood: Diversity & stability, Diversity & profitability, Rotations, Food environments, Food system transitions, Deforestation & ag, Great Lakes priorities, Translational research, Field size, Genetic erosion
- Consistent stabilizing effects of plant diversity across spatial scales and climatic gradients. More species-diverse communities are more stable. Ok, what about agricultural systems though?
- Financial profitability of diversified farming systems: A global meta-analysis. Total costs, gross income and profits were higher in diversified systems, and benefit-cost ratio similar to simplified systems. No word on stability, alas.
- Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Integrating a legume into your low-diversity/low-input cereal system can boost main crop yields by 20%. I wonder if this meta-analysis was included in the above meta-analysis. Again, no word on stability though.
- The influence of food environments on dietary behaviour and nutrition in Southeast Asia: A systematic scoping review. It’s the affordability, stupid. Should have gone for more diversified farming I guess :)
- Global food systems transitions have enabled affordable diets but had less favourable outcomes for nutrition, environmental health, inclusion and equity. Well according to this, industrialised farming (ie simplification) has led to more affordable diets. But we know from the above that diversification can be profitable. So it was the wrong kind of simplification? Can we diversify now and maintain affordability while also improving nutrition, environmental health, inclusion and equity? Wouldn’t that be something.
- Disentangling the numbers behind agriculture-driven tropical deforestation. Ending deforestation is not enough. The resulting agriculture must be diversified in the right way too, I guess.
- Strategizing research and development investments in climate change adaptation for root, tuber and banana crops in the African Great Lakes Region: A spatial prioritisation and targeting framework. Diversifying with drought-tolerant bananas and heat-tolerant potatoes is all well and good, but you also have to know where exactly to diversify, and here’s how.
- Translational research in agriculture. Can we do it better? Difficulty developing drought-tolerant bananas and heat-tolerant potatoes? Get more diverse peer-reviewers.
- Increasing crop field size does not consistently exacerbate insect pest problems. When you diversify, don’t worry too much about making fields bigger.
- Genetic diversity loss in the Anthropocene. You can predict change in genetic diversity from change in range size, and the average is about a 10% loss already. Ok, what about agricultural systems though? Wait, isn’t this where we came in? My brain hurts…
Happy birthday to Aussie genebank guidelines
The Australian Network for Plant Conservation is celebrating the first birthday of the third edition of “Strategies and guidelines for developing, managing and utilising ex situ collections” with a nice bunch of resources. And a quick survey. Check it out.
Brainfood: GIAHS, Austronesian ag, Neolithic Scotland, Livestock origins, Iroquoia maize, Maya drought, Agave diversity, Coffee diversity, Breadfruit cultivation
- Agricultural heritage systems and agrobiodiversity. FAO’s Globally Important Agricultural Heritage Systems (GIAHS) work just fine.
- A northern Chinese origin of Austronesian agriculture: new evidence on traditional Formosan cereals. The precursors of the Austronesians took foxtail millet, broomcorn millet and rice to Taiwan from around Shandong in northeastern China in the second half of the 4th millennium BCE. That was quite a globally important agricultural heritage system (note lower case) in its day.
- Neolithic culinary traditions revealed by cereal, milk and meat lipids in pottery from Scottish crannogs. At roughly the same time as the above, farmers in Scotland were eating a gruel made of wheat and milk. Maybe not so globally important, but still.
- Epipalaeolithic animal tending to Neolithic herding at Abu Hureyra, Syria (12,800–7,800 calBP): Deciphering dung spherulites. That wheat and milk came from far away and long ago. In fact, maybe 2000 years longer ago than is usually thought.
- Tracing Maize History in Northern Iroquoia Through Radiocarbon Date Summed Probability Distributions. Maize really took off in NY/Ontario/Quebec between 1200 and 1450 AD.
- Drought-Induced Civil Conflict Among the Ancient Maya. Towards the end of the above period there was real strife in the Maya lands, but also local resilience. Makes you wonder whether whatever was happening among the Iroquois and Maya was somehow connected.
- Genomic and Morphological Differentiation of Spirit Producing Agave angustifolia Traditional Landraces Cultivated in Jalisco, Mexico. Whatever happened in Mesoamerica 600 years ago, Indigenous knowledge of agave diversity survived.
- Vernacular Names and Genetics of Cultivated Coffee (Coffea arabica) in Yemen. Indigenous knowledge of coffee diversity doesn’t correspond with genetic data in this globally significant agricultural heritage system.
- Advanced and emerging agricultural innovations for securing food, climate and ecosystems in Moroccan oasis. Even globally important agricultural heritage systems need innovation.
- Potential of breadfruit cultivation to contribute to climate-resilient low latitude food systems. Breadfruit can be important globally, not just in its current agricultural heritage system.