- A New Methodological Approach to Detect Microcenters and Regions of Maize Genetic Diversity in Different Areas of Lowland South America. Multiple disciplines identify 4 microcenters of maize diversity in the lowlands of South America.
- Historical Routes for Diversification of Domesticated Chickpea Inferred from Landrace Genomics. Genomics identifies both Indian and Middle Eastern traces in Ethiopian chickpeas.
- Crop wild relatives in Lebanon: mapping the distribution of Poaceae and Fabaceae priority taxa for conservation planning. Spatial analysis identifies a couple of key ex situ and in situ conservation areas for CWR in Lebanon.
- Analysis of gaps in rapeseed (Brassica napus L.) collections in European genebanks. Spatial analysis identifies a few key ex situ and in situ conservation areas for rapeseed wild relatives in Europe.
- Genomic and population characterization of a diversity panel of dwarf and tall coconut accessions from the International Coconut Genebank for Latin America and Caribbean. Characterization of various sorts identifies different Atlantic and Pacific coconut genepools in the Western Hemisphere.
- Pleistocene-dated genomic divergence of avocado trees supports cryptic diversity in the Colombian germplasm. Genomics identifies a uniquely Colombian avocado genepool.
- Analysis of >3400 worldwide eggplant accessions reveals two independent domestication events and multiple migration-diversification routes. Genomics identifies separate Southeast Asia and Indian areas of domestication, and limited exchange between them.
- Population genomics identifies genetic signatures of carrot domestication and improvement and uncovers the origin of high-carotenoid orange carrots. Genomics identifies wester-central Asia as the area of carrot domestication in the Early Middle Ages, and western Europe as the place where the orange variant was selected in the Renaissance.
- A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Pangenomics identifies a gene in wild Kordofan melons as promoting the accumulation of sugar in watermelon.
- Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Pangenomics identifies south central China as the primary centre of origin of the genus Citrus.
- Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Pangenomics identifies wild species from North and Central America as having lots of genes for abiotic stress response, but also fewer transposable elements.
- Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Pangenomics identifies the key genes and structural variations associated with pearl millet accessions from the most hot and dry places.
- Dark side of the honeymoon: reconstructing the Asian x European rose breeding history through the lens of genomics. Genomics and other data identifies a shift from a European to a mainly Asian genetic background in cultivated roses during the 19th century, leading to a narrowing of genetic diversity.
Nibbles: Crop diversity, Coloured rice, Saudi genebank, WorldVeg genebank, Mango genebank, USDA apple genebank, Green Revolution, Organic agriculture
- IFAD says we need diverse crops.
- KAUST says we need coloured rice.
- I hope it will go into Saudi Arabia’s new genebank.
- Genebank scientists says we need more collaboration.
- Goa thinks they need a new mango genebank.
- The USA already has an apple genebank.
- But will all these genebanks lead to a new Green Revolution…
- …or organic farming?
- Maybe both.
Branfood: Salinity tolerance, Comestibles, Underused species, On farm diversity, Minor cereals, Fragrant millet, Wild yams, Fonio, Winged bean, Giant taro, Nutmeg, Mungbean, Finger millet, Amaranth
- Salt-Tolerant Crops: Time to Deliver. Sure, breeding for salt tolerance using crop wild relatives is great, but have you tried just domesticating salt-tolerant wild species?
- Wild and cultivated comestible plant species in the Gulf of Mexico: phylogenetic patterns and convergence of type of use. No word on how many are salt-tolerant.
- Underutilized plants increase biodiversity, improve food and nutrition security, reduce malnutrition, and enhance human health and well-being. Let’s put them back on the plate! No word on how many are salt-tolerant.
- Indigenous crop diversity maintained despite the introduction of major global crops in an African centre of agrobiodiversity. If you want local crop diversity in Highland Ethiopia, look for it on the farms of the poorest. No word on how many are “underutilized”.
- The role of minor cereals in food and nutrition security in Bangladesh: constraints to sustainable production. Low yields, apparently. I think it could do with having aromatic grains. If only there was a way to make that happen…
- De novo creation of popcorn-like fragrant foxtail millet. Yeah, sometimes neither the crop not its wild relatives has the genes for it. Still, if you can edit in aroma, why not salt-tolerance?
- Global Genepool Conservation and Use Strategy for Dioscorea (Yam). I wonder how many of these 27 wild species could usefully be domesticated. Or are salt-tolerant.
- Towards conservation and sustainable use of an indigenous crop: A large partnership network enabled the genetic diversity assessment of 1539 fonio (Digitaria exilis) accessions. This is how you start to undo underutilization. I’m sure someone will edit it next.
- Diversity Assessment of Winged Bean [Psophocarpus tetragonolobus (L.) DC.] Accessions from IITA Genebank. Same as above, but with one hundredth as many accessions. I guess winged bean is even more underutilized than fonio.
- The forgotten giant of the Pacific: a review on giant taro (Alocasia macrorrhizos (L.) G.Don). Sad to say it doesn’t seem to be salt-tolerant. Maybe it’s aromatic, though. Or could be gene-edited to become so. Wouldn’t that be something.
- Retracing the center of origin and evolutionary history of nutmeg Myristica fragrans, an emblematic spice tree species. No need for editing, let’s just conserve the really diverse populations of the North Moluccas.
- Demographic history and distinct selection signatures of two domestication genes in mungbean. Domesticating the mungbean wasn’t all that easy. Hope it’s easier for some random salt-tolerant wild species.
- A plausible screening approach for moisture stress tolerance in finger millet (Eleusine coracana L.) germplasm accessions using membership function value at the seedling stage. Will it work on fonio? Or salt-tolerance?
- Adoption and impact of improved amaranth cultivars in Tanzania using DNA fingerprinting. So can we stop calling it underutilized? And start gene-editing it for aroma?
Brainfood: Vanilla diversity, Moth bean diversity, Lablab genome, Wheat allergens, Strampelli, Core collections, Collection structure, ITK, Sambal diversity
- Genetic diversity of the cultivated vanilla in Madagascar. Lots of genetic groups based on SNPs, but not structured in space or environmentally, except maybe by altitude.
- Genetic diversity, population structure, and genome-wide association study for the flowering trait in a diverse panel of 428 moth bean (Vigna aconitifolia) accessions using genotyping by sequencing. NW India is a centre of diversity.
- Chromosome-level genome assembly and population genomic resource to accelerate orphan crop lablab breeding. Two domestication “events,” with the 2-seeded form originating in Ethiopia.
- Reference proteomes of five wheat species as starting point for future design of cultivars with lower allergenic potential. Einkorn is really low in potential allergens.
- Nazareno Strampelli and the first Green Revolution. And all without SNPs, GWAS, genomes or proteomes.
- Developments on Core Collections of Plant Genetic Resources: Do We Know Enough? Do we ever?
- Assessing Genetic Distinctness and Redundancy of Plant Germplasm Conserved Ex Situ Based on Published Genomic SNP Data. Looks like we may know enough for some things after all.
- An (un)common remedy to Indigenous communities’ subsistence: revisiting Traditional Knowledge Commons. As we delve deeper and deeper into the genetic diversity of collections, let’s not forget the associated Indigenous Knowledge.
- Diversity of sambals, traditional Indonesian chili pastes. Case in point? Any allergens though, I wonder?
Nibbles: Transformation, MAHARISHI, Pastoralists and climate change, Utopian okra, Landrace breeding, Ghana genebank, Indian community seedbank, Rice pan-genome, Perennial rice
- Towards resilient and sustainable agri-food systems. Summary report from the FORSEE Series of Töpfer Müller Gaßner GmbH (TMG). Take home message: We need an internationally agreed framework for agri-food systems transformation that reduces the externalities of the current systems. But how?
- Chair Summary and Meeting Outcome of the G20 Meeting of Agricultural Chief Scientists 2023. “We highlight the importance of locally adapted crops for the transition towards resilient agriculture and food systems, enhancing agricultural diversity, and improving food security and nutrition.” And that includes the wonderfully named Millets And OtHer Ancient GRains International ReSearcH Initiative (MAHARISHI). Ah, so that’s how.
- Are pastoralists and their livestock to blame for climate change? Spoiler alert: It’s complicated, but no. And here’s a digest of resources from the Land Portal explaining they can be part of sustainable and resilient agri-food systems.
- The Utopian Seed Project is developing more climate-resilient okra in the southern USA.
- Joseph Lofthouse, Julia Dakin, Shane Simonsen and Simon Gooder — interviewed here about landrace-based breeding — would approve of utopian okra.
- Plenty of landraces in the Ghana national genebank, according to this mainstream media article.
- Also plenty of landraces in India’s community seedbanks.
- Professor Zhang Jianwei at the National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University has built an rice pan-genome database based on 16 (landraces presumably) accessions representing all the major sub-populations. The technical details are here. Rice sustainability and resilience no doubt beckons. Okra next?
- No, perennial rice next, apparently.