- Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. The struggle to ensure recognition of the importance of measuring genetic diversity is real, despite the available tools. And despite the range of uses to which the results can be put, as illustrated in the following papers.
- DNA barcoding markers provide insight into species discrimination, genetic diversity and phylogenetic relationships of yam (Dioscorea spp.). Measuring genetic diversity can help you tell species apart.
- Genetic diversity and population structure of barley landraces from Southern Ethiopia’s Gumer district: Utilization for breeding and conservation. Measuring genetic diversity can help you decide what’s new and what to use in breeding.
- Management of genetic erosion: The (successful) case study of the pear (Pyrus communis L.) germplasm of the Lazio region (Italy). Measuring genetic diversity can help you detect genetic erosion and figure out what to do about it.
- Genetic and Pomological Determination of the Trueness-to-Type of Sweet Cherry Cultivars in the German National Fruit Genebank. Measuring genetic diversity can help you fix mistakes in genebanks.
- Genetic diversity and local adaption of alfalfa populations (Medicago sativa L.) under long-term grazing. Measuring genetic diversity can help you identify adaptive genes.
- A common resequencing-based genetic marker data set for global maize diversity. Measuring genetic diversity can help you pinpoint useful flowering genes.
- Genome-wide association study of variation in cooking time among common bean (Phaseolus vulgaris L.) accessions using Diversity Arrays Technology markers. Measuring genetic diversity can help you identify carbon-friendly genes.
- Dissecting the genetic architecture of leaf morphology traits in mungbean (Vigna radiata (L.) Wizcek) using genome-wide association study. Measuring genetic diversity can help you find plants with nice leaves.
- Genetic Diversity Strategy for the Management and Use of Rubber Genetic Resources: More than 1,000 Wild and Cultivated Accessions in a 100-Genotype Core Collection. Measuring genetic diversity can help you go from over 1000 accessions to under 100.
- Sustainable seed harvesting in wild plant populations. Measuring genetic diversity can help you model optimal germplasm collecting strategies.
- Genetics of randomly bred cats support the cradle of cat domestication being in the Near East. Measuring genetic diversity can tell you where the cat was domesticated.
- Bacterial species diversity of traditionally ripened sheep legs from the Faroe Islands (skerpikjøt). Measuring genetic diversity can help you figure out how to ripen sheep legs properly.
Brainfood: Sulawesi Warty Pig, Neolithic violence, Early cotton, Livestock poop, Pontic millet, Bronze Age opium, Sami shamanism, Wild chickens
- Pigs as Pets: Early Human Relations with the Sulawesi Warty Pig (Sus celebensis). You don’t need to be a sedentary agricultural society to domesticate an animal as a pet. There was the dog, and also the Sulawesi Warty Pig.
- Conflict, violence, and warfare among early farmers in Northwestern Europe. Early sedentary agricultural societies were not exempt from violence, pets or no pets.
- The earliest cotton fibers and Pan-regional contacts in the Near East. At least early sedentary agricultural societies did all that fighting wearing comfortable cotton garments.
- How animal dung can help to reconstruct past forest use: a late Neolithic case study from the Mooswinkel pile dwelling (Austria). In between spells of fighting, early sedentary agricultural societies let their livestock roam the forest during the day but kept them in their settlements in winter, and that accumulates a lot of dung that can come in useful thousands of years later in working out what said livestock ate in said forest.
- Between Cereal Agriculture and Animal Husbandry: Millet in the Early Economy of the North Pontic Region. You didn’t need to be a completely sedentary agricultural society to grow Panicum miliaceum in the Pontic steppes.
- Opium trade and use during the Late Bronze Age: Organic residue analysis of ceramic vessels from the burials of Tel Yehud, Israel. There comes a time when a sedentary agricultural society will start growing, and then selling, drugs.
- A Sacred Tree in the Boreal forest: A Narrative About a Sámi Shaman, her Tree, and the Forest Landscape. You don’t need to be a sedentary agricultural society and grow drugs to have a rich spiritual life, but it’s harder — though not impossible — to document it.
- Historic samples reveal loss of wild genotype through domestic chicken introgression during the Anthropocene. Sedentary agricultural societies are polluting the genetics of wild species related to domesticates. The chicken in this case, the Sulawesi Warty Pig unavailable for comment.
Brainfood: Zea, Urochloa, Medicago, Solanum, Juglans, Camellia, Artocarpus, Lactuca, Phaseolus, and everything else
- Genome sequencing reveals evidence of adaptive variation in the genus Zea. Alleles associated with flowering time were key to adaptation in highland and temperate regions.
- THP9 enhances seed protein content and nitrogen-use efficiency in maize. And it came from wild teosinte.
- Diverged subpopulations in tropical Urochloa (Brachiaria) forage species indicate a role for facultative apomixis and varying ploidy in their population structure and evolution. Polyploidy plus apomixis equals world domination. Maize next?
- Plastid phylogenomics uncovers multiple species in Medicago truncatula (Fabaceae) germplasm accessions. Genebanks need to go beyond conventional taxonomy sometimes.
- Comparative Analysis of the Genetic Diversity of Chilean Cultivated Potato Based on a Molecular Study of Authentic Herbarium Specimens and Present-Day Gene Bank Accessions. Native Chilean potato landraces are being replaced and polluted…
- Diversity of Late Blight Resistance Genes in the VIR Potato Collection. …and will probably continue to be replaced and polluted.
- The United States Potato Genebank Holding of cv. Desiree is a Somatic Mutant of cv. Urgenta. Shit happens, even in well-run genebanks.
- Domestication and selection footprints in Persian walnuts (Juglans regia). Breeding hasn’t had much of an effect on diversity.
- Comparative phylogenetic analysis of oolong tea (Phoenix Dancong tea) using complete chloroplast genome sequences. Oolong teas are a genetic thing.
- Linking breadfruit cultivar names across the globe connects histories after 230 years of separation. Because of genebanks, botanic gardens, herbaria and three generations of women scientists we now know which breadfruit varieties Captain Bligh introduced to the West Indies.
- Lactuca georgica Grossh. is a wild species belonging to the secondary lettuce gene pool: additional evidence, obtained by KASP genotyping. A wild species gets demoted.
- Large genomic introgression blocks of Phaseolus parvifolius Freytag bean into the common bean enhance the crossability between tepary and common beans. A wild species helps with crossing two cultivated species. Figure out which genepool it belongs to after that.
- Genebanking plant genetic resources in the postgenomic era. Yeah, but all the above leads to the question: “what happens when all crop diversity has been sequenced?” Read this to find out.
Brainfood: Silkworm, Donkey, Cat, Chicken, Neolithic, Shamans, Locusts
- High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation. The silkworm was domesticated 5000 years ago in the middle Yellow River (along with millets?), but was improved independently and in different directions in China and Japan.
- The genomic history and global expansion of domestic donkeys. The donkey was domesticated in the Horn of Africa 7000 years ago and then developed in different directions in Africa and Eurasia. Covered in the NY Times, no less.
- Your horse is a donkey! Identifying domesticated equids from Western Iberia using collagen fingerprinting. Turns out you can tell horses and donkeys apart easily and cheaply from ancient collagen in archaeological remains.
- Genetics of randomly bred cats support the cradle of cat domestication being in the Near East. Humans were domesticated by cats in the eastern Mediterranean basin about 12,000 years ago.
- The history of the domestic cat in Central Europe. Wait, the Near Eastern wildcat, from which all domestic cats are derived, could have been in central Europe before the Neolithic.
- Missing puzzle piece for the origins of domestic chickens. Recent dating of chicken domestication from archaeological remains in Thailand at 1650–1250 BC underestimates the timescale. By a lot.
- Was the Fishing Village of Lepenski Vir Built by Europe’s First Farmers? And did they have cats?
- Shamanism at the transition from foraging to farming in Southwest Asia: sacra, ritual, and performance at Neolithic WF16 (southern Jordan). You need shamans to help you cope with all that animal domestication.
- Contributions of black locust (Robinia pseudoacacia L.) to livelihoods of peri-urban dwellers in the Free State Province of South Africa. Wait, black locusts are not animals? Hmm, they do seem to have some things in common with cats though.
Brainfood: Coconut in vitro, Clean cryo, Chickpea & lentil collections, Genebank data history, Eurisco update, Mining genebank data, TIK, Sampling strategy, Drones, GIS, Mexican CWR, Post-2020 biodiversity framework
- Thiamine improves in vitro propagation of sweetpotato [Ipomoea batatas (L.) Lam.] – confirmed with a wide range of genotypes. Getting there, keep tweaking…
- Minimizing the deleterious effects of endophytes in plant shoot tip cryopreservation. Something else to tweak.
- Ex Situ Conservation of Plant Genetic Resources: An Overview of Chickpea (Cicer arietinum L.) and Lentil (Lens culinaris Medik.) Worldwide Collections. Thankfully not much in vitro and cryo involved. The main tweak necessary is to share more characterization data with breeders.
- Data, Duplication, and Decentralisation: Gene Bank Management in the 1980s and 1990s. Ah, but do calls for more data also reflect attempts to cut costs and build political bridges? And would that be so bad?
- EURISCO update 2023: the European Search Catalogue for Plant Genetic Resources, a pillar for documentation of genebank material. Arguably, Eurisco tries to do all of the above, and pretty well.
- Bioinformatic Extraction of Functional Genetic Diversity from Heterogeneous Germplasm Collections for Crop Improvement. You need fancy maths to make sense of all that data. And use it.
- Research Status and Trends of Agrobiodiversity and Traditional Knowledge Based on Bibliometric Analysis (1992–Mid-2022). Not much traditional knowledge in those databases, though, eh? That would be one hell of a tweak.
- Species-tailored sampling guidelines remain an efficient method to conserve genetic diversity ex situ: A study on threatened oaks. Meanwhile, some people are still trying to figure out the best way to tweak sampling strategies to add diversity to genebanks. Spoiler alert: you need data on individual species.
- Collecting critically endangered cliff plants using a drone-based sampling manipulator. You also need drones.
- Application of Geographical Information System for PGR Management. One thing you can do with all that data is map stuff. So at least the drones know where to go.
- Incorporating evolutionary and threat processes into crop wild relatives conservation. The only thing that’s missing from this is traditional knowledge. And maybe drones.
- Conserving species’ evolutionary potential and history: opportunities under the new post-2020 global biodiversity framework. All these data will allow us to measure how well we’re doing. And whether we can ask for cryotanks, drones, and better databases.