- Plant domestication: setting biological clocks. Domestication changed plants’ timekeeping and made them less resilient, but there is variation among the biological clocks of different organs that could tapped in breeding.
- Plant domestication and agricultural ecologies. There have been 7 main paths to plant domestication, or commonalities in the ways that plants were domesticated by people in different parts of the world in the past: ecosystem engineering, ruderal, tuber, grain, segetal, fibre, fruit tree.
- Plants cultivated for ecosystem restoration can evolve toward a domestication syndrome. Ok, maybe 8.
- Diamonds in the Not-So-Rough: Wild Relative Diversity Hidden in Crop Genomes. The cool alleles you spotted in wild relatives may already be in cultivated genomes, and that can save breeders some time and effort.
- Finding needles in a haystack: identification of inter-specific introgressions in wheat genebank collections using low-coverage sequencing data. Ah, here they are.
- Interspecific common bean population derived from Phaseolus acutifolius using a bridging genotype demonstrate useful adaptation to heat tolerance. I guess this is an example of the time that could be saved.
- Mapping potential conflicts between global agriculture and terrestrial conservation. A third of agricultural production occurs in sites of high biodiversity conservation priority, with cattle, maize, rice, and soybean posing the greatest threat and sugar beet, pearl millet, and sunflower the lowest. No word on how many crop wild relatives are threatened, but there’s a cool online mapping tool that could I suppose be used to mash things up.
- Assessing habitat diversity and potential areas of similarity across protected areas globally. At a pinch, this could be used to identify backups for any threatened sites of high biodiversity conservation priority.
- Ex situ conservation of two rare oak species using microsatellite and SNP markers. Watch out for the creeping domestication syndrome though, if these ever get used for restoration :)
- TreeGOER: a database with globally observed environmental ranges for 48,129 tree species. Even more than all the CWRs we did. But no, I don’t know if those oaks are included…
- Ecological Niche Models using MaxEnt in Google Earth Engine: Evaluation, guidelines and recommendations. …but if not you can always work their ranges out for yourself.
Nibbles: AGRA, National security, Filipino fruits, Scuba rice, Tasteless pea, Blue Jay bean, Taiwan genebanks, Agrobiodiversity walks
- NGOs call on USAID to stop supporting AGRA. And not for the first time either.
- Report calls for US to invest more in agricultural research in support of global food security. AGRA unavailable for comment.
- A pean to the fruit trees of the Philippines. I’ll second that.
- Scuba rice comes to Africa. What took it so long?
- Apparently there’s a “wild pea plant” in India in which the flavour gene is turned off, and that’s a good thing. Going to have to look into this.
- A famous Canadian bean makes a come-back. Of course there are famous Canadian beans. More famous than that tasteless pea anyway.
- Nice piece on Taiwan’s crop genebanks. Lots of famous varieties in there no doubt.
- I really like the concept of “agrobiodiversity walks.” There should be one built around that wild tasteless pea.
Nibbles: Ancient grains, Small millets, Wheat, Kelp genebank, Mongolian breeds, Pumpkin seeds, Bioversity & CIAT, Tree history, Cool maps, Business & biodiversity
- Make Me Care About…ancient grains.
- Not enough? Here’s more.
- Wait, does wheat count?
- Make Me Care About…kelp.
- Make Me Care About…rare livestock breeds. In Mongolia. Jeremy unavailable for comment.
- Make Me Care About…pumpkins.
- Make Me Care About…Bioversity International…and its Alliance with CIAT.
- Make Me Care About…old writing about trees.
- Make Me Care About…the World.
- Make the Private Sector Care About…biodiversity, nature and landscape restoration.
Brainfood: Diversification, Nepal agrobiodiversity, Agroecology double, Agroforestry, Seeds of deforestation, Millets models
- Environmental context and herbivore traits mediate the strength of associational effects in a meta-analysis of crop diversity. More crops in fields means fewer pests, by and large.
- Approaches and Advantages of Increased Crop Genetic Diversity in the Fields. How they get more crops into fields in Nepal, and why it’s a good thing to do so.
- Agroecology as a transformative approach to tackle climatic, food, and ecosystemic crises. More crops in fields can be transformative.
- Agroecology Can Promote Climate Change Adaptation Outcomes Without Compromising Yield In Smallholder Systems. More crops (and other things, to be fair) in fields means better climate change adaptation.
- Providing targeted incentives for trees on farms: A transdisciplinary research methodology applied in Uganda and Peru. To get more tree crops in fields, follow the money.
- Impact of small farmers’ access to improved seeds and deforestation in DR Congo. Getting more, better crops into fields may lead to loss of primary forest if they don’t come with fertilizers.
- Small-scale farming in drylands: New models for resilient practices of millet and sorghum cultivation. Models show that plant growing cycle, soil water-holding capacity and soil nutrient availability determine how much sorghum and millets are in fields.
Brainfood: Traits & environment, Acacia growth, Local extinction risk, Lebanese CWR priorities, Malawi CWR payments, Bread wheat origins, Wild lettuce, Ethiopian forages, Editing forages
- Why can’t we predict traits from the environment? Because plants are not collections of independent, isolated traits. All the more reason to study, understand and protect wild plants of economic importance, as the following papers show.
- Differential climatic conditions drive growth of Acacia tortilis tree in its range edges in Africa and Asia. Case in point of the above. Makes germplasm evaluation really hard.
- Understanding local plant extinctions before it is too late: bridging evolutionary genomics with global ecology. Modelling based on the genomic offset (GO) method and the mutations–area relationship (MAR) can help better predict the risk of extinction of different populations.
- Crop wild relatives in Lebanon: mapping the distribution of Poaceae and Fabaceae priority taxa for conservation planning. Bekaa and Baalbak have the highest diversity and the SW the most gaps.
- Community-Level Incentive Mechanisms for the Conservation of Crop Wild Relatives: A Malawi Case Study. Paying communities to conserve crop wild relatives could work and be relatively cheap. Waiting to see this being applied in the Bekaa.
- Population genomics unravels the Holocene history of bread wheat and its relatives. Yeah but crop wild relatives really held back bread wheat domestication. So maybe the Bekaa owes everyone else.
- New insights gained from collections of wild Lactuca relatives in the gene bank of the Institute of Evolution, University of Haifa. Maybe they can gain an insight into how to make lettuce taste of something. And I wonder what environmental variable that will be associated with.
- Climate change and land-use change impacts on future availability of forage grass species for Ethiopian dairy systems. Two forages will do better under climate change, one worse. Assuming a lot of stuff.
- Application of CRISPR/Cas9 technology in forages. But plants are not collections of independent, isolated traits, right?