- The world’s largest potato cryobank at the International Potato Center (CIP) – Status quo, protocol improvement through large-scale experiments and long-term viability monitoring. It’s been a long road, but they’re almost there…
- Overcoming Challenges for Shoot Tip Cryopreservation of Root and Tuber Crops. …but there’s a bit further to go for other roots and tubers….
- Conserving Citrus Diversity: From Vavilov’s Early Explorations to Genebanks around the World. …and citrus.
- Seed Longevity — The Evolution of Knowledge and a Conceptual Framework. The road goes on forever.
- The 3D Pollen Project: An open repository of three-dimensional data for outreach, education and research. The road has to begin somewhere.
- Pollen Cryobanking—Implications in Genetic Conservation and Plant Breeding. And we’re off…
Nibbles: Genebanks in Japan, India, SADC, China, Sustainable nutrition security
- Another recent article in the mainstream media about the Japanese genebank. Not entirely sure why, but let’s not look a gift horse etc etc. Couple nice examples of re-introduction of lost diversity to farmers.
- And here’s the mainstream media in India (and the PM, no less) singing the praises of a farmer custodian of millet diversity.
- The mainstream media in Zimbabwe doesn’t want to be left behind and jumps on the genebank bandwagon too with a piece about the SADC Plant Genetic Resources Centre.
- Yes, silkworms need a genebank too, and China is all over it.
- The Union of Concerned Scientists wants a new definition of food security and genebanks could probably help with that.
Brainfood: Why measure genetic diversity?
- Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. The struggle to ensure recognition of the importance of measuring genetic diversity is real, despite the available tools. And despite the range of uses to which the results can be put, as illustrated in the following papers.
- DNA barcoding markers provide insight into species discrimination, genetic diversity and phylogenetic relationships of yam (Dioscorea spp.). Measuring genetic diversity can help you tell species apart.
- Genetic diversity and population structure of barley landraces from Southern Ethiopia’s Gumer district: Utilization for breeding and conservation. Measuring genetic diversity can help you decide what’s new and what to use in breeding.
- Management of genetic erosion: The (successful) case study of the pear (Pyrus communis L.) germplasm of the Lazio region (Italy). Measuring genetic diversity can help you detect genetic erosion and figure out what to do about it.
- Genetic and Pomological Determination of the Trueness-to-Type of Sweet Cherry Cultivars in the German National Fruit Genebank. Measuring genetic diversity can help you fix mistakes in genebanks.
- Genetic diversity and local adaption of alfalfa populations (Medicago sativa L.) under long-term grazing. Measuring genetic diversity can help you identify adaptive genes.
- A common resequencing-based genetic marker data set for global maize diversity. Measuring genetic diversity can help you pinpoint useful flowering genes.
- Genome-wide association study of variation in cooking time among common bean (Phaseolus vulgaris L.) accessions using Diversity Arrays Technology markers. Measuring genetic diversity can help you identify carbon-friendly genes.
- Dissecting the genetic architecture of leaf morphology traits in mungbean (Vigna radiata (L.) Wizcek) using genome-wide association study. Measuring genetic diversity can help you find plants with nice leaves.
- Genetic Diversity Strategy for the Management and Use of Rubber Genetic Resources: More than 1,000 Wild and Cultivated Accessions in a 100-Genotype Core Collection. Measuring genetic diversity can help you go from over 1000 accessions to under 100.
- Sustainable seed harvesting in wild plant populations. Measuring genetic diversity can help you model optimal germplasm collecting strategies.
- Genetics of randomly bred cats support the cradle of cat domestication being in the Near East. Measuring genetic diversity can tell you where the cat was domesticated.
- Bacterial species diversity of traditionally ripened sheep legs from the Faroe Islands (skerpikjøt). Measuring genetic diversity can help you figure out how to ripen sheep legs properly.
Nibbles: Green seeds, Yam bean, Aussie wild tomato, Einkorn trial, US sorghum, Ethiopian forages tricot, Cuisine diversity, Apple catalogue, Hittite crash, Black Death
- Let’s say we wanted to transition to a more local and low-input production system in Europe. What seeds would we need and where would we get them from? The Greens/EFA in the European Parliament have some ideas.
- IITA is pushing the yam bean in Nigeria. Europe next?
- More on that new Australian wild tomato from a couple of years back. With audio goodness.
- The largest ever einkorn variety comparison trial makes the German news. Well, makes a press release anyway. Yam bean next?
- Another continent, another ancient grain: sorghum in the US. Yam bean next?
- The Ethiopia Grass project aims to improve livestock production, food crop yields AND soil quality. The trifecta!
- Nice infographics displaying dodgy data on the most common ingredients in different cuisines. Yam bean and einkorn nowhere to be seen.
- Cool community-created online catalogue of British apples. Looking forward to the yam bean one.
- It was drought that did for the Hittites, not lack of yam beans. Sea Peoples unavailable for comment.
- It was Yersinia pestis from Issyk-Kul that nearly did for Europe in the Middle Ages. Yes, you can study the genetic diversity of ancient deadly bugs and well as that of crops like yam bean and einkorn.
Brainfood: NbS, Intercropping, Sparing, Mixtures, Intensification, Shifting cultivation, Mexican wild foods, Chinese NUS, Andean crops, South African indigenous foods, Uganda community seedbanks
- Nature-Based Solutions and Agroecology: Business as Usual or an Opportunity for Transformative Change? Nature-based solutions need to be diversity-based. Let’s look at some example, shall we? Buckle up…
- The productive performance of intercropping. Meta-analysis shows intercropping leads to more land sparing and more protein compared to monoculture.
- Sparing or expanding? The effects of agricultural yields on farm expansion and deforestation in the tropics. Ouch, increasing yield results more often in higher deforestation than lower. If only they had gone for intercropping…
- Crop mixtures outperform rotations and landscape mosaics in regulation of two fungal wheat pathogens: a simulation study. …or crop mixtures.
- Intensified rice production negatively impacts plant biodiversity, diet, lifestyle and quality of life: transdisciplinary and gendered research in the Middle Senegal River Valley. And just to be clear, agricultural expansion can be bad for both farmers and the environment.
- Drivers and consequences of archetypical shifting cultivation transitions. Being able to charge rent is the main driver of the move away from shifting cultivation, but the environmental results depend on what system replaces it.
- Contribution of the biodiversity of edible plants to the diet and nutritional status of women in a Zapotec communities of the Sierra Norte, Oaxaca, Mexico. It’s the older, less educated housewives that are more nature-based, and all the better for it.
- Six Underutilized Grain Crops for Food and Nutrition in China. That would be barley, buckwheat, broomcorn millet, foxtail millet, oat, and sorghum, which would certainly make a nature-based breakfast of champions.
- Traditional crops and climate change adaptation: insights from the Andean agricultural sector. Growing traditional crops in the Andes may be less profitable, but it is more resilient to climate change. Unclear which of the two options is more nature-based, though. And has anyone told China?
- Opportunities and Challenges of Indigenous Food Plant Farmers in Integrating into Agri-Food Value Chains in Cape Town. To take advantage of nature-based solutions in South Africa, you have to know about local nature.
- Community Seedbanks in Uganda: Fostering Access to Genetic Diversity and Its Conservation. More research is needed to figure out how community seedbanks can be at their nature-based best.