- Human dispersal and plant processing in the Pacific 55 000–50 000 years ago. There was more to the peopling of the Pacific than seafaring.
- Identification of breadfruit (Artocarpus altilis) and South American crops introduced during early settlement of Rapa Nui (Easter Island), as revealed through starch analysis. Though seafaring took these people all the way to South America, it sees.
- Early agriculture and crop transitions at Kakapel Rockshelter in the Lake Victoria region of eastern Africa. A bit like Rapa Nui, Lake Victoria got crops from both west and east over time.
- Cotton and post-Neolithic investment agriculture in tropical Asia and Africa, with two routes to West Africa. Funny they didn’t find cotton at the Lake Victoria site.
- Drawing diffusion patterns of Neolithic agriculture in Anatolia. Itinerant expert harvesters spread agriculture into Anatolia. Maybe around Africa too, who knows.
- Early animal management in northern Europe: multi-proxy evidence from Swifterbant, the Netherlands. Early farmers in northern Europe managed separate herds of cattle in different ways alongside crops. What, itinerant expert livestock herders too?
- Introduction, spread and selective breeding of crops: new archaeobotanical data from southern Italy in the early Middle Ages. Sicily is a bit like Rapa Nui and Lake Victoria.
- Rice’s trajectory from wild to domesticated in East Asia. Rice domestication pushed back to about the same time as the Fertile Crescent. No word on the role of expert harvesters.
- Archaeological findings show the extent of primitive characteristics of maize in South America. Maize arrived in lowland South America in a pre-domesticated state, and stayed like that for a long time. That’s a long way for expert harvesters to go.
Brainfood: Seed quantity, Seed quality, Seed testing, Seed sampling, Cryo review, Potato diversity, Coconut cryo, Apple genebanks, Pear vulnerability, Pear restoration, Celebrity conservation, Indigenous rematriation, Farmers’ Rights
- Optimizing the accession-level quantity of seeds to put into storage to minimize seed (gene)bank regeneration or re-collection. = [nvt × 3]+[nd × (y × x)]+ qmin if you must know.
- A pragmatic protocol for seed viability monitoring in ex situ plant genebanks. Formulas are good, but you need some flexibility too.
- A power analysis for detecting aging of dry-stored soybean seeds: Germination versus RNA integrity assessments. Germination testing is good, but RNA integrity assessment is better, especially early on in storage.
- Sampling strategies for genotyping common bean (Phaseolus vulgaris L.) Genebank accessions with DArTseq: a comparison of single plants, multiple plants, and DNA pools. Pool the DNA from 25 plants for best results. They don’t even have to be alive :)
- Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. No seeds? No problem. Still a lot of research needed though.
- Potato soup: analysis of cultivated potato gene bank populations reveals high diversity and little structure. This should help figuring out what to put in cryo, I guess.
- Developing new in vitro micropropagation and cryopreservation techniques in coconut. A little less research needed.
- SNP genotyping Dutch heritage apple cultivars allows for germplasm characterization, curation, and pedigree reconstruction using genotypic data from multiple collection sites across the world. Now do coconuts.
- Vulnerability of pear (Pyrus) genetic resources in the U.S. It’s moderate to high. No word on what the vulnerability of coconut is.
- First plant conservation translocation in Armenia: restoring globally threatened wild pear populations. A little less vulnerable?
- Designing celebrity-endorsed behavioral interventions in conservation. I’d like to get a celebrity to endorse coconut cryoconservation. Mr Freeze?
- The seeds are coming home: a rising movement for Indigenous seed rematriation in the United States. Makes all the formulas and testing and gadgets worthwhile.
- Farmers’ Rights in the Plant Treaty: interrelations and recent interactions with other international regimes and processes. Will require all those formulas and testing and gadgets.
Brainfood: Ag research ROI, CGIAR & climate change, Crop species diversity, Training plant breeders, AI & plant breeding, Wheat breeding review, Wheat landraces, CIMMYT wheat breeding, Wheat D genome, Forages pre-breeding, Impact of new varieties, Two long-term barley experiment, High protein peas, Watermelon super-pangenome, Resynthesizing mustard, Consumer preference and breeding
- Benefit–Cost Analysis of Increased Funding for Agricultural Research and Development in the Global South. Fancy model says funding agricultural research is great value for money. Ok, let’s see if we can find some examples.
- Exploring CGIAR’s efforts towards achieving the Paris Agreement’s climate-change targets. Yeah, but in designing such research to mitigate climate change there should be more complete integration of food-systems perspectives.
- Crop species diversity: A key strategy for sustainable food system transformation and climate resilience. Now there’s a nice thing to integrate into your climate change adaptation and integration research.
- Cultivating success: Bridging the gaps in plant breeding training in Australia, Canada, and New Zealand. Gonna need more plant breeders also, though.
- Artificial intelligence in plant breeding. Yeah, and probably more artificial intelligence too.
- Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. Great advances have been made (even without AI) by wheat breeders, but there’s still a lot of untapped diversity out there.
- Harnessing landrace diversity empowers wheat breeding. For example in the A. E. Watkins landrace collection.
- Enhanced radiation use efficiency and grain filling rate as the main drivers of grain yield genetic gains in the CIMMYT elite spring wheat yield trial. Gotta wonder if there’s a limit though.
- Origin and evolution of the bread wheat D genome. Maybe we can squeeze a bit more out of the D genome. I wonder what AI says about that.
- The Role of Crop Wild Relatives and Landraces of Forage Legumes in Pre-Breeding as a Response to Climate Change. As above, but for a bunch of forages.
- Stakeholder Insights: A Socio-Agronomic Study on Varietal Innovation Adoption, Preferences, and Sustainability in the Arracacha Crop (Arracacia xanthorrhiza B.). Here’s an interesting methodology to evaluate the impact of new varieties designed and developed by AI (or not).
- Deep genotyping reveals specific adaptation footprints of conventional and organic farming in barley populations — an evolutionary plant breeding approach. An initial, diverse barley population is allowed to adapt to contrasting organic and conventional conditions for 2 decades and diverges considerably genetically as a result. Don’t need AI to predict that. Perhaps more surprisingly, analysis suggests organic-adapted populations need to be selected for root traits to catch up in yield.
- Natural selection drives emergent genetic homogeneity in a century-scale experiment with barley. What is it with barley breeding and long-term experiments? This one shows that a hundred years of natural selection has massively narrowed genetic diversity. Why aren’t there long-term wheat experiments? Or are there?
- Association study of crude seed protein and fat concentration in a USDA pea diversity panel. Really high protein peas are possible. No word on whether kids will like them any better. Let’s check again in a hundred years?
- Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Forget sweetness and disease resistance, maybe one of these wild species will help us grasp the holy grail of seedlessness. Wait, let me check on the whole cost-benefit thing for this.
- An indigenous germplasm of Brassica rapa var. yellow NRCPB rapa 8 enhanced resynthesis of Brassica juncea without in vitro intervention. Sort of like that wheat D genome thing, but for mustard. I do wonder why we don’t try crop re-synthesis a lot more.
- Special issue: Tropical roots, tubers and bananas: New breeding tools and methods to meet consumer preferences. Why involving farmers in all of the above could be a good idea.
Nibbles: Cropscapes, Ecuador cacao, Nigerian yams, Lima bean show, Mesopotamian cooking, Nepal seed banks, RNA integrity, China genebanks, Cryo comics, Greening
- The authors of book “Moving Crops and the Scales of History” have been awarded the Edelstein Prize 2024 for their work to “redefine historical inquiry based on the ‘cropscape’: the assemblage of people, places, creatures, technologies, and other elements that form around a crop.” Let’s see how many cropscapes we can come up with today.
- Here’s one. The Ecuador cacao genebank gets some much-needed help.
- Digging into Nigerian yams. And another.
- Castle Hex has a programme on Lima beans on 7-8 September. Sounds like fun.
- What if you can’t work out what the crops are, though? As in Mesopotamian recipe books, for example.
- The community seed banks of Nepal have a new website. Good news for those Nepalese cropscapes.
- A new project is testing RNA integrity number (RIN) as a metric of seed aging for a bunch of rare wild plants. One day maybe community seed banks will be using it.
- China has inventoried its agricultural germplasm. Will it be applying RIN next?
- The French are using bandes dessinées to teach about cryopreservation of animal genetic resources. Livestockscapes?
- Some drylands are getting greener and some people think that’s a problem. Always something.
Nibbles: Forest seed collecting, Colombian maize, Türkiye & China genebanks, Community seedbank trifecta, Wheat breeding, Rice breeding, Bean INCREASE, WorldVeg regen, UK apples, Rangeland management
- How to collect forestry seeds.
- Whole bunch of new maize races collected in Colombia.
- The Türkiye national genebank in the news. Lots of collecting there. Though maybe not as much as in this genebank in China.
- But small communities need genebanks too. Here’s an example from Ghana. And another from India. And a final one from the Solomon Islands.
- Need to use the stuff in genebanks though. Here’s how they do it in the UK. And in Bangladesh. And in Europe with the INCREASE project, which has just won a prize for citizen science. And in Taiwan. Sort of citizen science too.
- Collecting apples in the UK. Funny, the canonical lost-British-apple story appears on the BBC in the autumn usually. Kinda citizen science.
- Or we could do in situ conservation, as in this South African example… Just kidding, we all know it’s not either/or. Right? Probably a good idea to collect seeds is what I’m saying. Could even do it through citizen science.