- Why can’t we predict traits from the environment? Because plants are not collections of independent, isolated traits. All the more reason to study, understand and protect wild plants of economic importance, as the following papers show.
- Differential climatic conditions drive growth of Acacia tortilis tree in its range edges in Africa and Asia. Case in point of the above. Makes germplasm evaluation really hard.
- Understanding local plant extinctions before it is too late: bridging evolutionary genomics with global ecology. Modelling based on the genomic offset (GO) method and the mutations–area relationship (MAR) can help better predict the risk of extinction of different populations.
- Crop wild relatives in Lebanon: mapping the distribution of Poaceae and Fabaceae priority taxa for conservation planning. Bekaa and Baalbak have the highest diversity and the SW the most gaps.
- Community-Level Incentive Mechanisms for the Conservation of Crop Wild Relatives: A Malawi Case Study. Paying communities to conserve crop wild relatives could work and be relatively cheap. Waiting to see this being applied in the Bekaa.
- Population genomics unravels the Holocene history of bread wheat and its relatives. Yeah but crop wild relatives really held back bread wheat domestication. So maybe the Bekaa owes everyone else.
- New insights gained from collections of wild Lactuca relatives in the gene bank of the Institute of Evolution, University of Haifa. Maybe they can gain an insight into how to make lettuce taste of something. And I wonder what environmental variable that will be associated with.
- Climate change and land-use change impacts on future availability of forage grass species for Ethiopian dairy systems. Two forages will do better under climate change, one worse. Assuming a lot of stuff.
- Application of CRISPR/Cas9 technology in forages. But plants are not collections of independent, isolated traits, right?
Dams, damn dams, and accessions
Every once in a while a new dam dataset crops up. Dam, not damn. Well, maybe damn as well. Anyway, when that happens, I feel compelled to mash it up with accession locality data. Because if I don’t do it, who will?
The new dataset is the Global Dam Tracker, and you can download it and everything of course. It’s pretty easy to then upload it to Google Earth and play around with it. Including combining it with data on wild Oryza accessions from Genesys, for example.
On this map, the dams are shown in blue and wild rice accessions in red.
You can zoom in if you’re worried about the long-term in situ future of any given population.
Not for the first time, I wonder about the feasibility of one day automatically and in real time combining data from multiple potential stressors, including dams, to predict the risk of genetic erosion around the world. Something that AI should be able to do, surely?
Brainfood: Why measure genetic diversity?
- Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. The struggle to ensure recognition of the importance of measuring genetic diversity is real, despite the available tools. And despite the range of uses to which the results can be put, as illustrated in the following papers.
- DNA barcoding markers provide insight into species discrimination, genetic diversity and phylogenetic relationships of yam (Dioscorea spp.). Measuring genetic diversity can help you tell species apart.
- Genetic diversity and population structure of barley landraces from Southern Ethiopia’s Gumer district: Utilization for breeding and conservation. Measuring genetic diversity can help you decide what’s new and what to use in breeding.
- Management of genetic erosion: The (successful) case study of the pear (Pyrus communis L.) germplasm of the Lazio region (Italy). Measuring genetic diversity can help you detect genetic erosion and figure out what to do about it.
- Genetic and Pomological Determination of the Trueness-to-Type of Sweet Cherry Cultivars in the German National Fruit Genebank. Measuring genetic diversity can help you fix mistakes in genebanks.
- Genetic diversity and local adaption of alfalfa populations (Medicago sativa L.) under long-term grazing. Measuring genetic diversity can help you identify adaptive genes.
- A common resequencing-based genetic marker data set for global maize diversity. Measuring genetic diversity can help you pinpoint useful flowering genes.
- Genome-wide association study of variation in cooking time among common bean (Phaseolus vulgaris L.) accessions using Diversity Arrays Technology markers. Measuring genetic diversity can help you identify carbon-friendly genes.
- Dissecting the genetic architecture of leaf morphology traits in mungbean (Vigna radiata (L.) Wizcek) using genome-wide association study. Measuring genetic diversity can help you find plants with nice leaves.
- Genetic Diversity Strategy for the Management and Use of Rubber Genetic Resources: More than 1,000 Wild and Cultivated Accessions in a 100-Genotype Core Collection. Measuring genetic diversity can help you go from over 1000 accessions to under 100.
- Sustainable seed harvesting in wild plant populations. Measuring genetic diversity can help you model optimal germplasm collecting strategies.
- Genetics of randomly bred cats support the cradle of cat domestication being in the Near East. Measuring genetic diversity can tell you where the cat was domesticated.
- Bacterial species diversity of traditionally ripened sheep legs from the Faroe Islands (skerpikjøt). Measuring genetic diversity can help you figure out how to ripen sheep legs properly.
Nibbles: Mugumu, Gates, Fixation, OSA, USDA, Panicum, Digitaria, Britgrub, Wheat, ICRISAT, Svalbard
- Blog post on the importance of the mugumu tree in Kikuyu culture.
- Alas, no sign of mugumu trees on the Kenyan farm visited by Bill Gates recently. But there were chickens, drought-tolerant maize and mobile phones…
- …and there may soon be crops engineered for nitrogen fixation too, if his foundation’s project with the University of Cambridge comes through.
- Speaking of maize, here’s a nice illustrated story of how the Organic Seed Alliance is helping farmers grow their own tortilla corn in the Pacific Northwest.
- To generalize and contextualize the above, read this USDA e-book on plant collections and climate change.
- Dr Giedre Motuzaite Matuzeviciute just got a grant to study broomcorn millet domestication and dispersal in Central Asia. There may be lessons for present-day adaptation to climate change, says the blurb.
- There are probably lessons about adaptation to climate change also to be had from Kew’s work on fonio and other traditional crops in Guinea.
- I wonder if Kew boffins are also working on bere, perry and other endangered British foods though.
- It’s always nice to see someone first learn about genebanks, and how they can help with the whole climate change thing.
- Meanwhile, in India, ICRISAT gets a stamp, which however doesn’t look very much like India or ICRISAT to me. Plenty of broomcorn millet in its genebank, by the way.
- Plenty of seeds from the ICRISAT genebank in Svalbard, as Asmund Asdal will no doubt point out on 10 February.
Brainfood: Sulawesi Warty Pig, Neolithic violence, Early cotton, Livestock poop, Pontic millet, Bronze Age opium, Sami shamanism, Wild chickens
- Pigs as Pets: Early Human Relations with the Sulawesi Warty Pig (Sus celebensis). You don’t need to be a sedentary agricultural society to domesticate an animal as a pet. There was the dog, and also the Sulawesi Warty Pig.
- Conflict, violence, and warfare among early farmers in Northwestern Europe. Early sedentary agricultural societies were not exempt from violence, pets or no pets.
- The earliest cotton fibers and Pan-regional contacts in the Near East. At least early sedentary agricultural societies did all that fighting wearing comfortable cotton garments.
- How animal dung can help to reconstruct past forest use: a late Neolithic case study from the Mooswinkel pile dwelling (Austria). In between spells of fighting, early sedentary agricultural societies let their livestock roam the forest during the day but kept them in their settlements in winter, and that accumulates a lot of dung that can come in useful thousands of years later in working out what said livestock ate in said forest.
- Between Cereal Agriculture and Animal Husbandry: Millet in the Early Economy of the North Pontic Region. You didn’t need to be a completely sedentary agricultural society to grow Panicum miliaceum in the Pontic steppes.
- Opium trade and use during the Late Bronze Age: Organic residue analysis of ceramic vessels from the burials of Tel Yehud, Israel. There comes a time when a sedentary agricultural society will start growing, and then selling, drugs.
- A Sacred Tree in the Boreal forest: A Narrative About a Sámi Shaman, her Tree, and the Forest Landscape. You don’t need to be a sedentary agricultural society and grow drugs to have a rich spiritual life, but it’s harder — though not impossible — to document it.
- Historic samples reveal loss of wild genotype through domestic chicken introgression during the Anthropocene. Sedentary agricultural societies are polluting the genetics of wild species related to domesticates. The chicken in this case, the Sulawesi Warty Pig unavailable for comment.