- On the importance of diversity in ecological research. Diversity of the research teams, that is. This should apply to everything that follows.
- Adapting wild biodiversity conservation approaches to conserve agrobiodiversity. The main gap seem to be in the area of “payment for system services.” Agrobiodiversity could learn from biodiversity there.
- The Role of Crop, Livestock, and Farmed Aquatic Intraspecific Diversity in Maintaining Ecosystem Services. And there’s a lot to pay for, apparently.
- No basis for claim that 80% of biodiversity is found in Indigenous territories. There are better numbers for the undoubted (but alas still unrewarded) importance of Indigenous people for biodiversity conservation.
- Plant diversity decreases greenhouse gas emissions by increasing soil and plant carbon storage in terrestrial ecosystems. Huge meta-analysis says plant mixtures are better than monocultures for C storage. Maybe someone should pay for that?
- Food-sourcing from on-farm trees mediates positive relationships between tree cover and dietary quality in Malawi. And some of those trees will be wild.
- Delivering Systematic and Repeatable Area-Based Conservation Assessments: From Global to Local Scales. Actually, the Digital Observatory for Protected Areas (DOPA) could also usefully be applied to agricultural biodiversity.
- Applying deep learning on social media to investigate cultural ecosystem services in protected areas worldwide. Well, of course, it was only a matter of time. And the above comment also applies.
- Does long-term harvesting impact genetic diversity and population genetic structure? A study of Indian gooseberry (Phyllanthus emblica) in the Central Western Ghats region in India. AI will only get you so far. But it would be interesting to see if AI could have predicted these results. More training dataset needed, I suspect.
- Agrobiodiversity conservation enables sustainable and equitable land sparing. Intensifying agriculture can be good for land sparing, but its sustainability depends on land sharing. Nice way to escape the dichotomy.
- Towards an agroecological approach to crop health: reducing pest incidence through synergies between plant diversity and soil microbial ecology. I guess this is an example of the above.
- Are agricultural commodity production systems at risk from local biodiversity loss? Have you not been listening?
Nibbles: Svalbard Global Seed Vault, CePaCT genebank, CIAT genebank, Australia rice genebank, Bangladesh genebank, Maize mutants garden, Inoculants genebank, Millets community seedbank, Payments for Agrobiodiversity Conservation Services, Triadic Comparison of Technology Options, Crop diversity, Intercropping, Agroforestry, Diet diversity, World economy, Sustainable food
- Never thought I’d see the Svalbard Global Seed Vault in Psychology Today, yet here we are.
- The Pacific’s regional genebank is set for more work on lesser-known crops. Too bad most of them won’t be able to go to Svalbard.
- How to make a genebank beautiful as well as sustainable.
- Australia has a rice genebank. For some reason.
- Bangladesh gets a new genebank. Could have sworn it already had one.
- Mutants need a genebank too.
- And inoculants.
- Community-level genebanks have their place too. Though probably not for mutants.
- As long as the farmers get a benefit, of course.
- Tricot is a good way of evaluating all that stuff in genebanks.
- But you should also genotype it.
- Why bother with all this? Andreas Volz has a nice explanation.
- Genetic diversity is all very good, but don’t forget to intercrop.
- Which includes agroforestry.
- For a more varied diet.
- And a better world economy.
- And a more sustainable food system.
Brainfood: Ag research ROI, CGIAR & climate change, Crop species diversity, Training plant breeders, AI & plant breeding, Wheat breeding review, Wheat landraces, CIMMYT wheat breeding, Wheat D genome, Forages pre-breeding, Impact of new varieties, Two long-term barley experiment, High protein peas, Watermelon super-pangenome, Resynthesizing mustard, Consumer preference and breeding
- Benefit–Cost Analysis of Increased Funding for Agricultural Research and Development in the Global South. Fancy model says funding agricultural research is great value for money. Ok, let’s see if we can find some examples.
- Exploring CGIAR’s efforts towards achieving the Paris Agreement’s climate-change targets. Yeah, but in designing such research to mitigate climate change there should be more complete integration of food-systems perspectives.
- Crop species diversity: A key strategy for sustainable food system transformation and climate resilience. Now there’s a nice thing to integrate into your climate change adaptation and integration research.
- Cultivating success: Bridging the gaps in plant breeding training in Australia, Canada, and New Zealand. Gonna need more plant breeders also, though.
- Artificial intelligence in plant breeding. Yeah, and probably more artificial intelligence too.
- Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. Great advances have been made (even without AI) by wheat breeders, but there’s still a lot of untapped diversity out there.
- Harnessing landrace diversity empowers wheat breeding. For example in the A. E. Watkins landrace collection.
- Enhanced radiation use efficiency and grain filling rate as the main drivers of grain yield genetic gains in the CIMMYT elite spring wheat yield trial. Gotta wonder if there’s a limit though.
- Origin and evolution of the bread wheat D genome. Maybe we can squeeze a bit more out of the D genome. I wonder what AI says about that.
- The Role of Crop Wild Relatives and Landraces of Forage Legumes in Pre-Breeding as a Response to Climate Change. As above, but for a bunch of forages.
- Stakeholder Insights: A Socio-Agronomic Study on Varietal Innovation Adoption, Preferences, and Sustainability in the Arracacha Crop (Arracacia xanthorrhiza B.). Here’s an interesting methodology to evaluate the impact of new varieties designed and developed by AI (or not).
- Deep genotyping reveals specific adaptation footprints of conventional and organic farming in barley populations — an evolutionary plant breeding approach. An initial, diverse barley population is allowed to adapt to contrasting organic and conventional conditions for 2 decades and diverges considerably genetically as a result. Don’t need AI to predict that. Perhaps more surprisingly, analysis suggests organic-adapted populations need to be selected for root traits to catch up in yield.
- Natural selection drives emergent genetic homogeneity in a century-scale experiment with barley. What is it with barley breeding and long-term experiments? This one shows that a hundred years of natural selection has massively narrowed genetic diversity. Why aren’t there long-term wheat experiments? Or are there?
- Association study of crude seed protein and fat concentration in a USDA pea diversity panel. Really high protein peas are possible. No word on whether kids will like them any better. Let’s check again in a hundred years?
- Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Forget sweetness and disease resistance, maybe one of these wild species will help us grasp the holy grail of seedlessness. Wait, let me check on the whole cost-benefit thing for this.
- An indigenous germplasm of Brassica rapa var. yellow NRCPB rapa 8 enhanced resynthesis of Brassica juncea without in vitro intervention. Sort of like that wheat D genome thing, but for mustard. I do wonder why we don’t try crop re-synthesis a lot more.
- Special issue: Tropical roots, tubers and bananas: New breeding tools and methods to meet consumer preferences. Why involving farmers in all of the above could be a good idea.
Nibbles: SeedLinked, Heritage Seed Library, HarvestPlus, Enset, EBI, Saharan/Sahelian flora, Pollen, Food & climate, Food prices, Moonraker, Svalbard eats, Devex does seeds, CGRFA ABS survey
- SeedLinked: an app to source cool vegetable seeds. And more.
- Want to become a variety champion for the Heritage Seed Library? Where’s the app though?
- A compendium of evidence on the efficacy of biofortification from HarvestPlus. Jeremy surely available for comment?
- Kew celebrates efficacy of enset conservation in Ethiopia.
- Not sure if the Ethiopia Biodiversity Institute is in on that celebration.
- Some of Ethiopia is Sahelian, no? Anyway, here’s a nice piece on the forgotten, but important plants from that neck of the woods.
- We should all celebrate pollen banking much more.
- Celebrity chef worried about the effect of climate change on food.
- Including food prices. I dunno, maybe pollen banking will help.
- Or maybe even a lunar repository.
- Speaking of food prices, I bet this Svalbard restaurant is not cheap. Maybe there’s a nice view of the Seed Vault though. Who needs the moon?
- The latest Devex newsletter has lots of stuff on food prices and prizes and (non-lunar) seed vaults.
- Do you use any of the above for research and development? The FAO Commission on Genetic Resources for Food and Agriculture would like to hear from you.
We have the data on superfoods – now what?
Jeremy tackles superfood in his latest newsletter. Do subscribe.
The ultimate expression of food as medicine is the search for active ingredients. Why go to the bother of eating broccoli or Brussels sprouts if you can swallow a pill of glucosinolates and get all that cancer-fighting power directly? I’ve even seen arguments that beneficial phytochemicals be purified from wild plants and somehow incorporated into the batter for chicken nuggets. So I’ve long been skeptical of an effort launched a while ago to compile a periodic table of food, described as an initiative “for generating biomolecular knowledge of edible diversity”. I didn’t link to the original paper because it was behind a paywall but now that two of the 56 authors have written a kind of press release I’m happier to do so.
Superfood – Unveiling the “Dark Matter” of Food, Diets and Biodiversity explains how little we know about the molecular composition of the vast majority of edible plants, and that to learn more will take “a united scientific movement, larger than the human genome project”. Such a movement, in turn, calls for standardised tools, data and training to ensure that results are comparable.
What have we learned from the tools, data and training, so far? As an example, the authors offer
Broccoli, which achieved “superfood” status several years ago for its antioxidants and its connections to gut health, has over 900 biomolecules not found in other green vegetables.
And? Does that mean the broccoli pill will need more than glucosinolates, which are also present in many other brassicas? What does it mean, other than that we need more research?
There are larger goals. One, I think, is to somehow reverse the current trend for people in the West to fall upon the latest superfood with a cry of glee until the next one comes along, without giving anything back to the indigenous cultures that discovered and preserved the superfood. Calling for capacity-strengthening, the authors say “it is time to start opening the black box of food and create more nourishing food systems for everyone”. M’kay.
Another goal, I think, is to ensure that government dietary guidelines are based on more complete knowledge, despite the fact that even now it is more or less impossible to get people to follow those guidelines. Will having more molecular data help?
Full disclosure: I used to work for one of the organisations behind the Periodic Table of Food Initiative and I count many of the researchers as friends. I still don’t see the point, but please check out the gorgeous PTFI website for yourself and let me know why I am wrong.