- Implication of high variance in germplasm characteristics. Last week’s Brainfood focused on genomic variation. This week, in contrast, we look at phenotyping. But not old school phenotyping, oh no. This paper, for example, uses fancy-ish, but not especially expensive, imaging.
- High-throughput imaging of powdery mildew resistance of the winter wheat collection hosted at the German Federal ex situ Genebank for Agricultural and Horticultural Crops. This paper uses somewhat fancier, and possibly more costly, imaging. Vorsprung durch Technik.
- Low availability of functional seed trait data from the tropics could negatively affect global macroecological studies, predictive models and plant conservation. Even embryos in seeds can be phenotyped.
- Agroforestry Trees’ Architecture as Evidence of Domestication: Case of African Mango Tree in the Dahomey Gap, West Africa. I wonder if one could describe the shape of tree crowns from space? I hope not, this work sounded like fun…
- Diversidad biocultural de tomate nativo en Oaxaca, México. Phenotype is socially constructed in tomato too.
- Who Defines Fine Chocolate? The Construction of Global Cocoa Quality Standards from Latin America. Can you standardise a social construct such as the flavour of chocolate, and would it help farmers? Maybe.
- Douro wine-tourism engaging consumers in nature conservation stewardship: An immersive biodiversity experience. How to make money out of a socially constructed phenotype.
- Natural range, habitats and populations of wild peas (Pisum L.). We should get out of our labs and look for wild peas in the oases of the Sahara Desert, the subalpine communities of Georgia, and the Asir Mts of Yemen. But will we know them when we see them?
Nibbles: ICRISAT breeding, India climate change, Seed catalogues, Karabakh horse
- New ICRISAT varieties of sorghum, pearl millet and pigeonpea are doing well in drought-hit Kenya. For now, at least: something to keep an eye on. Genebanks and breeding to the rescue?
- It’s behind a Times of India paywall, alas, but this seems to be an article about the effects of a very warm February on wheat, vegetables and grapes in that country.
- Spring is coming to the northern hemisphere, so of course The New Yorker has a piece on the allure of seed catalogues. I hope there are drought-tolerant and heat-resistant varieties in there. And that they’re clearly labelled as such.
- Meanwhile, oblivious of it all, AramcoWorld has an elegiac piece on the revival of the Karabakh horse in Azerbaijan. Beautiful plumage.
Nibbles: Brazil agroforestry, US sweet potatoes, Egypt sweet potatoes, Regenerative Carlsberg, Plant Pandemic Studies, The Dawn of Everything, Allianz biodiversity report
- Saleseforce is funding work by CIFOR-ICRAF to help diversify agriculture in the Brazilian state of Pará by growing more nutritious fruit trees in agroforestry systems.
- USDA researchers are breeding sweet potatoes that are better able to deal with weeds. No word on how they do in agroforestry systems.
- I wonder if those weed-resistant sweet potatoes would find a market in Egypt.
- Beer “giant” Carlsberg says it’s going all-in on regenerative barley growing practices. Looking forward to seeing hops agroforestry systems.
- The British Society for Plant Pathology has a series of really engaging Plant Pandemic Studies, including for some crops that do well in agroforestry systems.
- The Dawn of Everything, by David Graeber and David Wengrow, is getting a lot of attention, including for its thesis that agriculture began in the Fertile Crescent as somewhat ad hoc, experimental, diverging, complementary and interacting lowland and highland agroforestry systems, and did not always lead to inequality and hierarchy. With a nice map.
- And finally, here’s a report from Allianz on why the financial sector should care about biodiversity-friendly agricultural systems (pace David Wood), like maybe, but not only, agroforestry.
Brainfood: Why measure genetic diversity?
- Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. The struggle to ensure recognition of the importance of measuring genetic diversity is real, despite the available tools. And despite the range of uses to which the results can be put, as illustrated in the following papers.
- DNA barcoding markers provide insight into species discrimination, genetic diversity and phylogenetic relationships of yam (Dioscorea spp.). Measuring genetic diversity can help you tell species apart.
- Genetic diversity and population structure of barley landraces from Southern Ethiopia’s Gumer district: Utilization for breeding and conservation. Measuring genetic diversity can help you decide what’s new and what to use in breeding.
- Management of genetic erosion: The (successful) case study of the pear (Pyrus communis L.) germplasm of the Lazio region (Italy). Measuring genetic diversity can help you detect genetic erosion and figure out what to do about it.
- Genetic and Pomological Determination of the Trueness-to-Type of Sweet Cherry Cultivars in the German National Fruit Genebank. Measuring genetic diversity can help you fix mistakes in genebanks.
- Genetic diversity and local adaption of alfalfa populations (Medicago sativa L.) under long-term grazing. Measuring genetic diversity can help you identify adaptive genes.
- A common resequencing-based genetic marker data set for global maize diversity. Measuring genetic diversity can help you pinpoint useful flowering genes.
- Genome-wide association study of variation in cooking time among common bean (Phaseolus vulgaris L.) accessions using Diversity Arrays Technology markers. Measuring genetic diversity can help you identify carbon-friendly genes.
- Dissecting the genetic architecture of leaf morphology traits in mungbean (Vigna radiata (L.) Wizcek) using genome-wide association study. Measuring genetic diversity can help you find plants with nice leaves.
- Genetic Diversity Strategy for the Management and Use of Rubber Genetic Resources: More than 1,000 Wild and Cultivated Accessions in a 100-Genotype Core Collection. Measuring genetic diversity can help you go from over 1000 accessions to under 100.
- Sustainable seed harvesting in wild plant populations. Measuring genetic diversity can help you model optimal germplasm collecting strategies.
- Genetics of randomly bred cats support the cradle of cat domestication being in the Near East. Measuring genetic diversity can tell you where the cat was domesticated.
- Bacterial species diversity of traditionally ripened sheep legs from the Faroe Islands (skerpikjøt). Measuring genetic diversity can help you figure out how to ripen sheep legs properly.
Brainfood: NbS, Intercropping, Sparing, Mixtures, Intensification, Shifting cultivation, Mexican wild foods, Chinese NUS, Andean crops, South African indigenous foods, Uganda community seedbanks
- Nature-Based Solutions and Agroecology: Business as Usual or an Opportunity for Transformative Change? Nature-based solutions need to be diversity-based. Let’s look at some example, shall we? Buckle up…
- The productive performance of intercropping. Meta-analysis shows intercropping leads to more land sparing and more protein compared to monoculture.
- Sparing or expanding? The effects of agricultural yields on farm expansion and deforestation in the tropics. Ouch, increasing yield results more often in higher deforestation than lower. If only they had gone for intercropping…
- Crop mixtures outperform rotations and landscape mosaics in regulation of two fungal wheat pathogens: a simulation study. …or crop mixtures.
- Intensified rice production negatively impacts plant biodiversity, diet, lifestyle and quality of life: transdisciplinary and gendered research in the Middle Senegal River Valley. And just to be clear, agricultural expansion can be bad for both farmers and the environment.
- Drivers and consequences of archetypical shifting cultivation transitions. Being able to charge rent is the main driver of the move away from shifting cultivation, but the environmental results depend on what system replaces it.
- Contribution of the biodiversity of edible plants to the diet and nutritional status of women in a Zapotec communities of the Sierra Norte, Oaxaca, Mexico. It’s the older, less educated housewives that are more nature-based, and all the better for it.
- Six Underutilized Grain Crops for Food and Nutrition in China. That would be barley, buckwheat, broomcorn millet, foxtail millet, oat, and sorghum, which would certainly make a nature-based breakfast of champions.
- Traditional crops and climate change adaptation: insights from the Andean agricultural sector. Growing traditional crops in the Andes may be less profitable, but it is more resilient to climate change. Unclear which of the two options is more nature-based, though. And has anyone told China?
- Opportunities and Challenges of Indigenous Food Plant Farmers in Integrating into Agri-Food Value Chains in Cape Town. To take advantage of nature-based solutions in South Africa, you have to know about local nature.
- Community Seedbanks in Uganda: Fostering Access to Genetic Diversity and Its Conservation. More research is needed to figure out how community seedbanks can be at their nature-based best.