- It’s pretty rare to have a mainstream media piece on the use of crop wild relatives for climate change adaptation but here we have an example with tomato, so make the most of it. There’s an interesting wrinkle though, so more to come, time permitting.
- It’s even rarer to see a mainstream media piece on genebank staff getting trained. What’s going on out there?
- Not exactly mainstream media, but how many times have you seen an official government press release on its livestock censuses? Anyway, India’s last one was carried out in 2019 and covered 184 breeds of 16 species. Wonder where the data is.
- Speaking of government press releases, here’s one from USDA announcing that it has joined a coffee breeding network. Well, I for one think it’s important.
- And staying in the USA, you know how you read in mainstream textbooks that Native Americans got horses from retreating Spanish colonists after the Pueblo Revolt? And you know how Native Americans have been saying that’s not what they think happened? How rare is it that a scientific paper involving Indigenous authors overturns a mainstream historical narrative and is splashed all over the mainstream media? Very rare, that’s how rare.
Brainfood: Traits & environment, Acacia growth, Local extinction risk, Lebanese CWR priorities, Malawi CWR payments, Bread wheat origins, Wild lettuce, Ethiopian forages, Editing forages
- Why can’t we predict traits from the environment? Because plants are not collections of independent, isolated traits. All the more reason to study, understand and protect wild plants of economic importance, as the following papers show.
- Differential climatic conditions drive growth of Acacia tortilis tree in its range edges in Africa and Asia. Case in point of the above. Makes germplasm evaluation really hard.
- Understanding local plant extinctions before it is too late: bridging evolutionary genomics with global ecology. Modelling based on the genomic offset (GO) method and the mutations–area relationship (MAR) can help better predict the risk of extinction of different populations.
- Crop wild relatives in Lebanon: mapping the distribution of Poaceae and Fabaceae priority taxa for conservation planning. Bekaa and Baalbak have the highest diversity and the SW the most gaps.
- Community-Level Incentive Mechanisms for the Conservation of Crop Wild Relatives: A Malawi Case Study. Paying communities to conserve crop wild relatives could work and be relatively cheap. Waiting to see this being applied in the Bekaa.
- Population genomics unravels the Holocene history of bread wheat and its relatives. Yeah but crop wild relatives really held back bread wheat domestication. So maybe the Bekaa owes everyone else.
- New insights gained from collections of wild Lactuca relatives in the gene bank of the Institute of Evolution, University of Haifa. Maybe they can gain an insight into how to make lettuce taste of something. And I wonder what environmental variable that will be associated with.
- Climate change and land-use change impacts on future availability of forage grass species for Ethiopian dairy systems. Two forages will do better under climate change, one worse. Assuming a lot of stuff.
- Application of CRISPR/Cas9 technology in forages. But plants are not collections of independent, isolated traits, right?
Brainfood: Human diversity, Wild rye, Caribbean cassava, Three Sisters, Old beer, Old apples, Feral crops, Crop resynthesis
- Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Farmers may have pushed hunter-gatherers to the northern edge of Europe while also in mixing with them.
- Identification and exploitation of wild rye (Secale spp.) during the early Neolithic in the Middle Euphrates valley. Those Europeans on the move — both farmers and hunter-gatherers — would have been familiar with wild rye, but that’s pretty much gone from the Fertile Crescent now.
- Caribbean Deep-Time Culinary Worlds Revealed by Ancient Food Starches: Beyond the Dominant Narratives. But enough about Europe. It wasn’t always all about cassava in the pre-colonial, and indeed colonial, Caribbean…
- Reuniting the Three Sisters: collaborative science with Native growers to improve soil and community health. …as there was also the maize/beans/squash system in that part of the world, and may well be again.
- Understanding Early Modern Beer: An Interdisciplinary Case-Study. Something else that could come back is early modern Irish beer, and I’d be there for that.
- Forgotten forest relics: Apple trees (Malus spp.) in eastern U.S. forests. Old abandoned orchards, and escapes therefrom, could have lots of interesting apple diversity. Early modern American cider, anyone?
- Building a feral future: Open questions in crop ferality. And it’s not just apples. It’s a whole movement in fact.
- Resynthesized Rapeseed (Brassica napus): Breeding and Genomics. Sure, we can rebuild it, we have the technology. But will it go feral on us again?
Nibbles: ICRISAT breeding, India climate change, Seed catalogues, Karabakh horse
- New ICRISAT varieties of sorghum, pearl millet and pigeonpea are doing well in drought-hit Kenya. For now, at least: something to keep an eye on. Genebanks and breeding to the rescue?
- It’s behind a Times of India paywall, alas, but this seems to be an article about the effects of a very warm February on wheat, vegetables and grapes in that country.
- Spring is coming to the northern hemisphere, so of course The New Yorker has a piece on the allure of seed catalogues. I hope there are drought-tolerant and heat-resistant varieties in there. And that they’re clearly labelled as such.
- Meanwhile, oblivious of it all, AramcoWorld has an elegiac piece on the revival of the Karabakh horse in Azerbaijan. Beautiful plumage.
Brainfood: Genomics for conservation and use edition
- How genomics can help biodiversity conservation. Let’s find out, but let’s broaden it to use as well, shall we? On the assumption that what’s good for conservation is good for use, and vice versa.
- Genetic and genomic interventions in crop biofortification: Examples in millets. Genomics can help you get more nutritious millets, and also use millets to improve the nutritive content of other cereals too.
- Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus. Genomics can help you figure out ways to decrease the toxicity of grasspea.
- Extensive crop–wild hybridization during Brassica evolution and selection during the domestication and diversification of Brassica crops. Genomics can help you figure out the evolutionary history of crops…
- Molecular characterization of Brassica genebank germplasm confirms taxonomic identity and reveals low levels and source of taxonomic errors. …assuming you have you accessions labelled correctly that is.
- Dual domestications and origin of traits in grapevine evolution. Genomics can help you figure out the evolutionary history of crops. No, wait, we already had that one…
- Balancing grain yield trade-offs in ‘Miracle-Wheat’. Genomics can help you figure out the best phenotype in wheat.
- Focusing the GWAS Lens on days to flower using latent variable phenotypes derived from global multienvironment trials. Genomics can help you figure out the best phenotype in lentils too.
- Awned versus awnless wheat spikes: does it matter? Although actually you don’t necessarily need genomics to help you figure out the best phenotype in wheat. But let’s get back on track.
- SNP Diversity and Genetic Structure of “Rogosija”, an Old Western Balkan Durum Wheat Collection. That’s better. Genomics can help you figure out that a wheat collection can consist of distinct ecogeographic groupings.
- Repeatability of adaptation in sunflowers: genomic regions harbouring inversions also drive adaptation in species lacking an inversion. Genomics can help you figure out what’s behind local adaptation in crop wild relatives.
- Re-evaluating Homoploid Reticulate Evolution in Helianthus Sunflowers. Genomics can help you figure out the evolutionary history of crop wild relatives. Where have I heard that before?
- A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen. Genomics can help you figure out the evolutionary history of plant pathogens too. Here’s a Twitter thread from one of the authors with lots of maps to prove it.
- Honey bee populations of the USA display restrictions in their mtDNA haplotype diversity. Yeah, you guessed it, pollinators too.
- Mezcal worm in a bottle: DNA evidence suggests a single moth species. I rest my case.