The sweet smell of agricultural biodiversity

Readers of this blog probably share my belief that agricultural biodiversity (ABD) is critical to our future. Economists have come up with elaborate concepts and numbers to value it. Scare scenarios abound, about the potential failure of genetically narrow crops jeopardizing the world’s food supply. (Luckily they haven’t materialized, for the most part). Yet most people seem to be thoroughly indifferent to ABD, to judge from the general unawareness and the uniformity of our consumption, through which every single day we decide against ABD. I have therefore always believed that unless we can connect people emotionally and positively to the cause of agricultural biodiversity, its conservation and use will be a difficult sell.

Chanel 5 bottle One of the pillars of my belief has long been Chanel 5 perfume.

Isn’t it derived from the Chanel 5 tree, also called ylang ylang? Botanically known as Cananga odorata, ylang ylang is a widely cultivated tree with heavily fragrant flowers, originally from Asia. Those flowers have ensured its spread around the tropics. Here in Cali, Colombia, where I live, the tree is common, and releases its sweet scent to perfume the balmy tropical nights. What better example could there be that agricultural biodiversity not only ensures our survival, but adds glamour and excitement to our lives?

That pillar received a devastating blow when a well-meaning colleague recently pointed out to me that Chanel 5 is a blend of entirely synthetic aldehydes, and has been since its launch in 1921. It actually epitomizes the industry’s break from a natural to a synthetic perfume model. I should have investigated more thoroughly. Indeed, I have since learned that perfumes nowadays are overwhelmingly made from synthetic sources and not at all as natural as you might conclude from the vocabulary experts use to describe fragrances.

However, I must come to the defense of the industry. Internet marketers of Chanel 5 do not hide the importance of aldehydes in the Chanel 5 fragrance. The nomenclatural equation of perfume and tree, as far as I can see, is mostly to blame on websites such as this, which seem unfaithfully to copy one another. (There is an excellent monograph on Cananga odorata — and loads of other species — at Agroforestry.net, but it too erroneously states that the flowers are the basis for Chanel 5 perfume.)

Cananga odorata flowers Which leaves me puzzling: how did the tree get its name? Was it simply because its smell happens to resemble the perfume? Or was Coco Chanel inspired by the tree’s fragrance, and then realized that it was cheaper and more reliable to base its production on synthetic chemistry? I am also worried: Are consumers sophisticated enough to appreciate the greater complexity of natural fragrances? If so, they might start once again to demand perfumes made of natural ingredients (as they had to in the past, before synthetics changed the industry), thus providing income opportunities to poor tropical producers?

Anyone out there to educate me on this?

European corn borer not so boring

Jeremy had a post recently on how to keep track of emerging pests and diseases. Certainly services like ProMED-mail and HealthMap are incredibly valuable. But perhaps even better would be a way to predict what a disease might do before it actually does it, for example as a result of climate change. That’s what some Czech researchers have done for the European corn borer, a pest of maize. ((There’s also an assessment of the risk of spread to new areas in a recent study of the root-parasite Orobanche crenata, but that paper did not specifically consider climate change in any detail.)) They modelled its life cycle on the basis of daily weather data, both current, to see if the model fit reality, and possible future, to predict what the pest might do under different climate change scenarios. The result was that the corn borer will cover the entire agricultural area of the country by 2040-2075, by which time “maize is expected to partly replace traditional cereals (e.g. winter wheat, rye, etc.).” That’s a frightening prospect. Better start planning – and breeding – for it now. ((A recent paper on wheat spot blotch in the East Gangetic Plains of India, Bangladesh and Nepal describes how breeding has made good resistant varieties available, but adds that climate change is tilting the playing field in favour of the disease, which means that breeders can’t afford to rest on their laurels.))

Earthworms, nematodes, bananas

There’s an interesting paper in the latest Pedologia. Researchers grew Cavendish bananas in all combinations of with and without an endoparasitic nematode, and with and without  an earthworm. They found that the banana plants did better when there were earthworms around, which slightly alleviated the root damage done by the nematodes and made more nutrients bioavailable. This is a great illustration of the importance of having an understanding of agricultural biodiversity as a whole, in the sense of all the different organisms — including crops, pests, symbionts, whatever — that interact in a farming landscape, affecting each other’s performance. These kinds of interactions are what organic agriculture aims to maintain, and why silver bullets rarely work.

Basmati rice on the rise

India’s Financial Express has a piece describing some of the recent history of Basmati rice. I guess it’s a fairly familiar story, but a couple of things stood out for me as I read it. One was that India and Pakistan “are planning to jointly claim rights for geographical indications (GIs) for this aromatic long grain rice.” Another was that the “European Union … is in favour of duty derogation for import of Basmati having pure parental lines.” So not landraces, just newly bred Basmati varieties? Finally, I found the link between Basmati and organic agriculture intriguing.

Ugandan discussions

Ugandan minister of Agriculture Hilary Onek has been talking to Chinese officials about increased Chinese investment in modernizing Uganda’s agriculture. Onek’s main desire seems to be to increase the use of fertilizers and certain types of high-yielding seed. It sounds like the same old same old, with no thought for either traditional smallholder expertise or their approach to new technology. But maybe all that hi-tech investment really is what Uganda and China need.