- Which crop biodiversity is used by the food industry throughout the world? A first evidence for legume species. Mainly soy, alas. Which is bad because…
- Diversified agriculture leads to diversified diets: panel data evidence from Bangladesh. …promoting diversified farming systems and market participation is good for women’s empowerment and better diets. Which is just as well because…
- Historical shifting in grain mineral density of landmark rice and wheat cultivars released over the past 50 years in India. …breeding hasn’t been good for nutritional content in staples.
- Surviving mutations: how an Indonesian Capsicum frutescens L. cultivar maintains capsaicin biosynthesis despite disruptive mutations. But if you can breed for extreme pungency, you can surely breed for better nutrient content.
- Exploiting Indian landraces to develop biofortified grain sorghum with high protein and minerals. Yep, simple selection can make a sorghum landrace more nutritious.
- Genome-edited foods. Or you could resort to gene editing.
- Adoption and impact of improved amaranth cultivars in Tanzania using DNA fingerprinting. Although maybe it might be easier to just eat more amaranth.
- Stakeholders’ perceptions of and preferences for utilizing fonio (Digitaria exilis) to enrich local diets for food and nutritional security in Nigeria. But documenting knowledge will be key in either case.
- Domestication through clandestine cultivation constrained genetic diversity in magic mushrooms relative to naturalized populations. And watch what you’re doing to diversity.
Brainfood: MLS, PPP, GMOs, SINAREFI, FGD, InDel
- What Plant Genetic Resources for Food and Agriculture Are Available under the Plant Treaty and Where Is This Information? It’s really difficult to know, and it shouldn’t be.
- Bridging the gap? Public–private partnerships and genetically modified crop development for smallholder farmers in Africa. They really haven’t worked. But should they have?
- Recalcitrant maize: Conserving agrobiodiversity in the era of genetically modified organisms. Trying to keep landraces and GMOs both physically and conceptually apart won’t work, and doesn’t need to.
- Flavour, culture and food security: The spicy entanglements of chile pepper conservation in 21st century Mexico. Efforts to ensure food security needs to take flavour into account if they are to work.
- Gender differential in choices of crop variety traits and climate-smart cropping systems: Insights from sorghum and millet farmers in drought-prone areas of Malawi. Efforts to improve crop adaptation and resilience to climate change need to take gender into account if they are to work.
- A target cultivar-specific identification system based on the chromatographic printed array strip method for eight prominent Japanese citrus cultivars. Specific DNA markers can be used to enforce plant breeders’ rights.
Brainfood: Maize, Chickpea, CWR, Canola, Coconut, Avocado, Eggplant, Carrot, Watermelon, Citrus, Potato, Pearl millet, Roses
- A New Methodological Approach to Detect Microcenters and Regions of Maize Genetic Diversity in Different Areas of Lowland South America. Multiple disciplines identify 4 microcenters of maize diversity in the lowlands of South America.
- Historical Routes for Diversification of Domesticated Chickpea Inferred from Landrace Genomics. Genomics identifies both Indian and Middle Eastern traces in Ethiopian chickpeas.
- Crop wild relatives in Lebanon: mapping the distribution of Poaceae and Fabaceae priority taxa for conservation planning. Spatial analysis identifies a couple of key ex situ and in situ conservation areas for CWR in Lebanon.
- Analysis of gaps in rapeseed (Brassica napus L.) collections in European genebanks. Spatial analysis identifies a few key ex situ and in situ conservation areas for rapeseed wild relatives in Europe.
- Genomic and population characterization of a diversity panel of dwarf and tall coconut accessions from the International Coconut Genebank for Latin America and Caribbean. Characterization of various sorts identifies different Atlantic and Pacific coconut genepools in the Western Hemisphere.
- Pleistocene-dated genomic divergence of avocado trees supports cryptic diversity in the Colombian germplasm. Genomics identifies a uniquely Colombian avocado genepool.
- Analysis of >3400 worldwide eggplant accessions reveals two independent domestication events and multiple migration-diversification routes. Genomics identifies separate Southeast Asia and Indian areas of domestication, and limited exchange between them.
- Population genomics identifies genetic signatures of carrot domestication and improvement and uncovers the origin of high-carotenoid orange carrots. Genomics identifies wester-central Asia as the area of carrot domestication in the Early Middle Ages, and western Europe as the place where the orange variant was selected in the Renaissance.
- A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Pangenomics identifies a gene in wild Kordofan melons as promoting the accumulation of sugar in watermelon.
- Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Pangenomics identifies south central China as the primary centre of origin of the genus Citrus.
- Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Pangenomics identifies wild species from North and Central America as having lots of genes for abiotic stress response, but also fewer transposable elements.
- Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Pangenomics identifies the key genes and structural variations associated with pearl millet accessions from the most hot and dry places.
- Dark side of the honeymoon: reconstructing the Asian x European rose breeding history through the lens of genomics. Genomics and other data identifies a shift from a European to a mainly Asian genetic background in cultivated roses during the 19th century, leading to a narrowing of genetic diversity.
Nibbles: Crop diversity, Coloured rice, Saudi genebank, WorldVeg genebank, Mango genebank, USDA apple genebank, Green Revolution, Organic agriculture
- IFAD says we need diverse crops.
- KAUST says we need coloured rice.
- I hope it will go into Saudi Arabia’s new genebank.
- Genebank scientists says we need more collaboration.
- Goa thinks they need a new mango genebank.
- The USA already has an apple genebank.
- But will all these genebanks lead to a new Green Revolution…
- …or organic farming?
- Maybe both.
Branfood: Salinity tolerance, Comestibles, Underused species, On farm diversity, Minor cereals, Fragrant millet, Wild yams, Fonio, Winged bean, Giant taro, Nutmeg, Mungbean, Finger millet, Amaranth
- Salt-Tolerant Crops: Time to Deliver. Sure, breeding for salt tolerance using crop wild relatives is great, but have you tried just domesticating salt-tolerant wild species?
- Wild and cultivated comestible plant species in the Gulf of Mexico: phylogenetic patterns and convergence of type of use. No word on how many are salt-tolerant.
- Underutilized plants increase biodiversity, improve food and nutrition security, reduce malnutrition, and enhance human health and well-being. Let’s put them back on the plate! No word on how many are salt-tolerant.
- Indigenous crop diversity maintained despite the introduction of major global crops in an African centre of agrobiodiversity. If you want local crop diversity in Highland Ethiopia, look for it on the farms of the poorest. No word on how many are “underutilized”.
- The role of minor cereals in food and nutrition security in Bangladesh: constraints to sustainable production. Low yields, apparently. I think it could do with having aromatic grains. If only there was a way to make that happen…
- De novo creation of popcorn-like fragrant foxtail millet. Yeah, sometimes neither the crop not its wild relatives has the genes for it. Still, if you can edit in aroma, why not salt-tolerance?
- Global Genepool Conservation and Use Strategy for Dioscorea (Yam). I wonder how many of these 27 wild species could usefully be domesticated. Or are salt-tolerant.
- Towards conservation and sustainable use of an indigenous crop: A large partnership network enabled the genetic diversity assessment of 1539 fonio (Digitaria exilis) accessions. This is how you start to undo underutilization. I’m sure someone will edit it next.
- Diversity Assessment of Winged Bean [Psophocarpus tetragonolobus (L.) DC.] Accessions from IITA Genebank. Same as above, but with one hundredth as many accessions. I guess winged bean is even more underutilized than fonio.
- The forgotten giant of the Pacific: a review on giant taro (Alocasia macrorrhizos (L.) G.Don). Sad to say it doesn’t seem to be salt-tolerant. Maybe it’s aromatic, though. Or could be gene-edited to become so. Wouldn’t that be something.
- Retracing the center of origin and evolutionary history of nutmeg Myristica fragrans, an emblematic spice tree species. No need for editing, let’s just conserve the really diverse populations of the North Moluccas.
- Demographic history and distinct selection signatures of two domestication genes in mungbean. Domesticating the mungbean wasn’t all that easy. Hope it’s easier for some random salt-tolerant wild species.
- A plausible screening approach for moisture stress tolerance in finger millet (Eleusine coracana L.) germplasm accessions using membership function value at the seedling stage. Will it work on fonio? Or salt-tolerance?
- Adoption and impact of improved amaranth cultivars in Tanzania using DNA fingerprinting. So can we stop calling it underutilized? And start gene-editing it for aroma?