- Plant domestication: setting biological clocks. Domestication changed plants’ timekeeping and made them less resilient, but there is variation among the biological clocks of different organs that could tapped in breeding.
- Plant domestication and agricultural ecologies. There have been 7 main paths to plant domestication, or commonalities in the ways that plants were domesticated by people in different parts of the world in the past: ecosystem engineering, ruderal, tuber, grain, segetal, fibre, fruit tree.
- Plants cultivated for ecosystem restoration can evolve toward a domestication syndrome. Ok, maybe 8.
- Diamonds in the Not-So-Rough: Wild Relative Diversity Hidden in Crop Genomes. The cool alleles you spotted in wild relatives may already be in cultivated genomes, and that can save breeders some time and effort.
- Finding needles in a haystack: identification of inter-specific introgressions in wheat genebank collections using low-coverage sequencing data. Ah, here they are.
- Interspecific common bean population derived from Phaseolus acutifolius using a bridging genotype demonstrate useful adaptation to heat tolerance. I guess this is an example of the time that could be saved.
- Mapping potential conflicts between global agriculture and terrestrial conservation. A third of agricultural production occurs in sites of high biodiversity conservation priority, with cattle, maize, rice, and soybean posing the greatest threat and sugar beet, pearl millet, and sunflower the lowest. No word on how many crop wild relatives are threatened, but there’s a cool online mapping tool that could I suppose be used to mash things up.
- Assessing habitat diversity and potential areas of similarity across protected areas globally. At a pinch, this could be used to identify backups for any threatened sites of high biodiversity conservation priority.
- Ex situ conservation of two rare oak species using microsatellite and SNP markers. Watch out for the creeping domestication syndrome though, if these ever get used for restoration :)
- TreeGOER: a database with globally observed environmental ranges for 48,129 tree species. Even more than all the CWRs we did. But no, I don’t know if those oaks are included…
- Ecological Niche Models using MaxEnt in Google Earth Engine: Evaluation, guidelines and recommendations. …but if not you can always work their ranges out for yourself.
Nibbles: Ancient grains, Small millets, Wheat, Kelp genebank, Mongolian breeds, Pumpkin seeds, Bioversity & CIAT, Tree history, Cool maps, Business & biodiversity
- Make Me Care About…ancient grains.
- Not enough? Here’s more.
- Wait, does wheat count?
- Make Me Care About…kelp.
- Make Me Care About…rare livestock breeds. In Mongolia. Jeremy unavailable for comment.
- Make Me Care About…pumpkins.
- Make Me Care About…Bioversity International…and its Alliance with CIAT.
- Make Me Care About…old writing about trees.
- Make Me Care About…the World.
- Make the Private Sector Care About…biodiversity, nature and landscape restoration.
The latest on the spread of agriculture in Eurasia
Remember the map of the spread of agriculture in Europe that I mashed up with barley genebank accessions a while back? Well, there’s a new version out, according to a tweet from Detlef Gronenborn.
It will eventually make its way here with the previous versions.
Nibbles: Iron beans, Tree projects, Lablab genome, Tree collection management, Italian cooking, Replacing ugali, Gene-edited teff, Communicating plant breeding, Plant diseases, Sustainable intensification, Transforming African ag, Ag research investment, Saving seeds, Ukraine genebank
- Jeremy continues to dig deep into biofortification, and is not happy with what he finds out about iron-rich beans.
- Maybe he’ll donate to one of CIFOR-ICRAF’s nutrition-flavoured tree projects instead.
- Don’t worry, maybe lablab can be biofortified now that we have its genome.
- Speaking of trees, if you want to plant one in a particular botanic garden or arboretum, is it likely to thrive, now and in the future? Find out using the BGCI Climate Assessment Tool.
- Speaking of botanic gardens and arboreta, here are some resources on how they manage their tree collections.
- Prof. Alberto Grandi debunks the many myths of Italian cuisine.
- Christine Gatwiri doesn’t think maize can be replaced in Kenyan cuisine. I just hope it can be replaced in Italian cuisine.
- Will gene-edited teff finds its way into Ethiopian cuisine? And would it be a bad thing if it did? It depends on being open about it I guess…
- … so let’s remind ourselves of some ways plant breeding can usefully engage with the public, shall we?
- And let’s also remind ourselves that plant breeding is necessary, for example to protect our food supply against diseases. The Guardian has receipts.
- Prof. Glenn Denning doubles down on the whole better-maize-seeds-plus-fertilizer thing in Africa, but adds some greenery. In more senses than one. So yes, trees are allowed. And maybe even lablab and teff for all I know. Incidentally, the above gene-edited teff is shorter than “normal”, which could mean it might respond to more fertilizer in the same way as those Green Revolution wheats and rices once did.
- Ah yes, the “transformation” and “revolution” tropes are definitely all over the discourse on African agriculture these days. According to this article, what transformation and revolution will require are consistent planning, political backing, a fit-for-purpose lead organization and that perennial favourite, result-oriented implementation. No word here on greenery specifically, but at least it’s not ruled out.
- And to back all that up, CGIAR gets The Economist Impact to say that more funding is needed for agricultural research and innovation. Results-oriented, naturally.
- Meanwhile, in Suriname, Bangladesh and Guinea-Bissau, local people are saving their traditional seeds and agricultural practices. The revolution will eat its own (seeds).
- Phew, the Ukrainian seed collection is squared away. Now for Suriname, Bangladesh, Guinea-Bissau…
Brainfood: 100 plant science questions, Biodiversity data, Cropland expansion double, CC & yields, Crop diversity & stability, Nutritious crops double, Feminist markets
- One hundred important questions facing plant science: an international perspective. How do we leverage existing genetic diversity to create climate-resilient crops? is only number 3 you say? I’ll take it. And in fact that broad question gets deconstructed in questions 36-71. Now, let’s see how today’s haul of papers relates to that, shall we?
- A strategy for the next decade to address data deficiency in neglected biodiversity. Well, yeah, easy one, clearly you need data to conserve the crop wild relatives that could help you breed those climate-resilient crops.
- Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Apart from anything else, that data would tell you which CWR in protected areas are threatened with cropland expansion, and said CWR could help you with breeding crops that could limit cropland expansion by increasing production on existing cropland. Could, could, could…
- Global Maps of Agricultural Expansion Potential at a 300 m Resolution. That cropland expansion might do less damage in some places than others. Still with me?
- Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Right, that’s why those CWR might come in useful. Assuming you can still find them with all that cropland expansion.
- Divergent impacts of crop diversity on caloric and economic yield stability. At the state level within the USA, crop species diversity is positively associated with yield stability when yield is measured in $ but negatively when measured in calories. Now do it for genetic diversity.
- Role of staple cereals in human nutrition: Separating the wheat from the chaff in the infodemics age. The benefits of those climate-resilient, more nutritious crops need to be better communicated.
- Simple solutions for complex problems? What is missing in agriculture for nutrition interventions. What does nutritious mean anyway?
- “Whose demand?” The co-construction of markets, demand and gender in development-oriented crop breeding. Who is it that wants those climate-resilient, nutritious crops anyway?
- Take-home message: leveraging existing genetic diversity to create climate-resilient crops might be the easy part.