Animal Health for the Environment and Development

We sometimes talk about agricultural biodiversity as if there’s a line that separates it from other kinds of — wild — biodiversity, but of course it doesn’t work like that. There are all kinds of intearactions. For example, diseases can move from wild to domesticated species. Given all the zoonotic diseases that have made the news lately, it seems like it would be sensible to look at human, domestic animal and wildlife health together, rather than in isolation from each other. But apparently such an integrated approach is pretty rare. An initiative of the Wildlife Conservation Society is trying to change all that:

…improving livestock health not only improves human nutrition and incomes, but in the case of zoonotic diseases also contributes directly to improved human health. In addition, healthier domestic animals contribute to securing healthier wildlife (and vice versa), decreasing chances of disease transmission at the livestock/wildlife interface. These cross-sectoral benefits are not all “automatic,” but require that explicit linkages be made between improved food security and health and more sustainable environmental stewardship from the household and community levels on up.

Dragon’s blood set to dry up

Having been involved in the botanical exploration of the Indian Ocean island of Socotra back in the early 90s, and also — more recently — having done some ecological niche modeling, I was fascinated to see these interests coincide in a recent paper in Biological Conservation. Italian and Yemeni researchers ((The Italian and Yemeni governments, UNDP and IUCN (among others) are financing a Socotra Conservation and Development Programme. Nothing like that when I was there, of course.)) have modeled the distribution of the Socotran endemic Dracaena cinnabari, the Dragonblood Tree, to predict what might happen to it with climate change. It’s not good. This flagship species, whose resin has been the source of a dye and medicine since antiquity, is looking at a halving of its potential area of distribution, due to drier conditions, and only a couple of its current localities will fall within what will remain suitable. Fortunately, they are near a protected area, and the authors recommend that its boundaries be expanded to include them.

Wild relatives to the rescue (again)

You may remember the recent warnings about a new strain of wheat stem rust called Ug99 making its way from the Rift Valley of Africa across the Red Sea to Yemen, thus threatening the very home of wheat in the Middle East. Jeremy blogged about it a couple of months back. Well, resistance to the disease has now been found in about 70% of the 100-odd samples of a wild wheat (Aegilops sharonensis) collected in southern Lebanon and Israel, according to a paper in Plant Disease. Four of the samples actually have resistance to a whole range of fungal diseases:

Co-author of the paper, Yehoshua Aniksterat, of the Israel-based Institute for Cereal Crops Improvement at Tel Aviv University, told SciDev.Net that although it could be difficult — and take up to five years or more — they may be able to transfer genes from wild to cultivated wheat.

The map below is what GBIF knows about the geographic distribution of A. sharonensis ((Israel Nature and Parks Authority, Israel Nature and Parks Authority (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1431, 2007-08-14) US National Plant Germplasm System, United States National Plant Germplasm System Collection (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1429, 2007-08-14).)).

sharonensis.jpg