- Constructing Seed Boundaries: Foundation and Evolution of Scientific Conceptions and Practices of Crop Diversity from the Green Revolution to date. We need to put the knowledge, expertise, activities and needs of farmers at the centre of conservation and use of crop diversity.
- Open Source Seeds and the Revitalization of Local Knowledge. Open-source seeds is one way we can put the knowledge, expertise, activities and needs of farmers at the centre of conservation and use of crop diversity.
- Evaluation of Global Composite Collection Reveals Agronomically Superior Germplasm Accessions for Chickpea Improvement. We need detailed, multi-location, multi-year agronomic evaluation of chickpea diversity to figure out what diversity we should use to give farmers the diversity we think they will need.
- Home gardens of Central Asia: Reservoirs of diversity of fruit and nut tree species. We need homegardens.
- Data-driven, participatory characterization of farmer varieties discloses teff breeding potential under current and future climates. We need detailed, multi-location, multi-year agronomic evaluation of teff diversity done in collaboration with farmers to figure out what diversity we should use to give farmers the diversity they will need, and what they already have.
- Cultural Effects on Sorghum Varieties Grown, Traits Preferred, and Seed Management Practices in Northern Ethiopia. We need detailed, multi-location, multi-year studies of farmers’ sorghum diversity, practices and needs to figure out what diversity we should use to give farmers the diversity they will need, and what they already have.
- Metrics for optimum allocation of resources on the composition and characterization of crop collections: The CIMMYT wheat collection as a proof of concept. We could use genotyping and this fancy maths to figure out what to have in our wheat genebank collections so we can then figure out which diversity to use to give farmers the diversity we think they will need.
- From marginalized to miracle: critical bioregionalism, jungle farming and the move to millets in Karnataka, India. Forget wheat. We need local food activism. But critical local food activism.
- G-DIRT: a web server for identification and removal of duplicate germplasms based on identity-by-state analysis using single nucleotide polymorphism genotyping data. We need this fancy software to get rid of duplicates from our genebank collections so it’s cheaper to maintain them and ensure that they’re always around for people to use to get to farmers the diversity they need.
- “Famine Foods” and the Values of Biodiversity Preservation in Israel-Palestine. We need recipes.
Nibbles: Forgotten crops special issue, Coffee fingerprinting, Three Sisters, Food gardening, Magic mushrooming, Genebanks in Ukraine, Colombia, Australia, China
- Forthcoming special issue of Plants, People, Planet on forgotten crops. Get your paper in about how they’re under-represented in genebanks.
- Or about how they need to be DNA fingerprinted, like the USDA is doing for coffee.
- I wonder if there is a forgotten crops version of the Three Sisters. Answers on a postcard, please.
- Forget about genebanks, grow those forgotten crops in your garden. Rebelliously.
- Forget about forgotten crops, how about forgotten mushrooms?
- Lest we forget the Ukrainian genebank.
- No way to forget the Future Seeds genebank.
- Australians are not being allowed to forget about genebanks, plant and animal. With video goodness. There’s hope yet.
- Meanwhile, in China…
Nibbles: CGIAR impacts, Innovative varieties, Sweet potato in PNG, Mexican food viz, Mango diversity, Lactase persistence, Tree planting, Indigenous sea gardens
- Average returns on agricultural R&D investment is 100%, says CGIAR.
- I wonder how many from this list of the most innovative plant varieties of 2020 can trace back to some CGIAR product. Or genebank.
- Which sweet potato varieties do consumers actually like in PNG?
- Cool visualizations of the relationships between Mexican crops and foods.
- One village, 100 mangoes. Visualize that.
- Don’t blame high food prices on war. Entirely, anyway.
- Lactase persistence is not due to the benefits of drinking milk. Entirely, anyway.
- A whole bunch of tools to help select trees to plant in Europe. The entirely correct URL for the climate matching tool is this one though.
- Why worry about any of that when you can have sea gardens, though?
Brainfood: Wild scarlet runner beans, Wild coffee, Mexican vanilla, Hybrid barley, Zea genus, Wild maize gene, N-fixing xylem microbiota, Drone phenotyping, Wild tomato, Potato breeding, Wild potato, Wheat evaluation, Rice breeding returns
- The genomic signature of wild-to-crop introgression during the domestication of scarlet runner bean (Phaseolus coccineus L.). The wild Mexican genepool is helping to counteract the effects of the domestication bottleneck.
- Genetic variation in wild and cultivated Arabica coffee (Coffea arabica L.): Evolutionary origin, global distribution, and its effect on fungal disease incidence in Southwest Ethiopia. Domesticated disease-resistant cultivars are threatening the genetic integrity of the wild genepool. You win some, you lose some.
- Uncovering haplotype diversity in cultivated Mexican vanilla species. Plenty of evidence of past hybridization events in cultivated vanilla in Mexico. Maybe it can swap stories with scarlet runner bean.
- Six-rowed wild-growing barleys are hybrids of diverse origins. In the case of barley, the wild-cultivated hybrids even got a separate Latin binomial.
- Portrait of a genus: genome sequencing reveals evidence of adaptive variation in Zea. Lots of variation in interesting adaptive traits in the wild relatives of maize. Did they, or will they, make their way into the crop, I wonder?
- An adaptive teosinte mexicana introgression modulates phosphatidylcholine levels and is associated with maize flowering time. This one did.
- A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Its wild relatives are not the only wild organisms maize benefits from.
- Phenomic data-facilitated rust and senescence prediction in maize using machine learning algorithms. Drones and fancy maths can be used to predict and document southern rust infection in maize. Maybe in wild relatives too one day, who knows.
- A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity. A tomato wild relative has a gene for resistance to bacterial speck disease, so of course they had to sequence its genome.
- Genetic gains in potato breeding as measured by field testing of cultivars released during the last 200 years in the Nordic Region of Europe. Genetic gains for yield (measured in non-target environments) were not that great and contributed about half of productivity gains. Results for other traits were even worse, mainly because of stringent market demands. So no chance of using wild relatives I suppose.
- Genotypic Response and Selection of Potato Germplasm Under Heat Stress. Not so fast…
- Dataset of historic and modern bread and durum wheat cultivar performance under conventional and reduced tillage with full and reduced irrigation. I wonder to what extent wild relatives contributed to the differences.
- Assessing returns to research investments in rice varietal development: Evidence from the Philippines and Bangladesh. Net returns from collaboration in rice breeding between IRRI and national partners are still strong in the Philippines and Bangladesh, but declining, and faster in the former than the latter. Plenty of genes from wild relatives in IRRI lines of course. Maybe there could be more?
Podcasting agricultural biodiversity
Talking of agrobiodiversity-themed podcasts ((Yes, we were, kinda.)), there’s a fun dip into (some of the) history of the tomato over at Historically Thinking. Meanwhile, at Eat This Podcast, Jeremy has embarked on a monumental romp ((Yes, you can have a monumental romp.)) through the role of wheat in world history. Pizza, anyone?