- Characteristics of the resistance of spring wheat varieties to pathogens of leaf diseases typical for the zone of the Right-Bank Forest-Steppe of Ukraine. 3 of 19 varieties from the national genebank could be useful.
- The adaptability of soft spring wheat (Triticum aestivum L.) varieties. 3 of 10 accessions from the national genebank had high general adaptive ability.
- Investigation of the Carbohydrates of Camelina sativa (L.) Crantz and Camelina microcarpa Andrz. Levels of monosaccharides quantified in material from the national genebank.
- Characteristic of morphological traits and biochemical indicators in Linum pubescens. A flax wild relative with ornamental potential.
- Inheritance of productivity and its elements by hybrids and lines of common bean (Phaseolus vulgaris L.). Lots of interesting variation to investigate further among F1-F6 hybrids.
- Combining ability of self-pollined sunflower lines – parents of confectionery hybrids. Tasty material derived from genebank accessions.
- Оil content in chickpea seeds of the national collection of Ukraine. Could do with more variation among the 43 accessions tested from the national genebank. But the whole collection is pretty important.
- Plant genetic resources of Ukrainian Podillia. Results of a 2019 collecting expedition by the national genebank.
- Genetic relatedness of sweet cherry (Prunus avium L.) cultivars from Ukraine determined by microsatellite markers. Ukrainian cultivars combine genetic material of local, western European, and Caucasian origin.
- Characteristics of different varieties of the pea (Pisum sativum L.) in the zone of the Southern Forest-Steppe of Ukraine. Some of 30 newly introduced pea varieties might be useful in increasing productivity.
- Progress in Japanese quinces breeding in Ukraine. Since 1913!
- Molecular diversity in the Ukrainian melon collection as revealed by AFLPs and microsatellites. 38 accessions fall into the 3 standard genetic groups.
- The history of sunflowers in Ukraine. Not peer-reviewed, but anyway.
Nibbles: Chinese crop diversity, Reforestation, Seed swapping, Biofortification
- China does a census of crop diversity for its genebank.
- Getting birds to help replant forests in early modern Japan.
- Swapping seeds in Bristol.
- The complementary roles of fortification and biofortification.
Brainfood: Spatial data, Extinction risk, Improved lentils, Lentil collection, Ohia germination, Shea genomics, Wild olive, Cacao climate refugia, Cacao sacred groves, Italian winter squash, Nigerian yams, Bambara groundnut diversity
- CropHarvest: A global dataset for crop-type classification. 90,000 datapoints all over the world, nicely labelled with what’s going on there agriculturally speaking. Let the AI rip.
- Using publicly available data to conduct rapid assessments of extinction risk. Pretty much useless, but at least now we know why. Should have used AI.
- Plot-level impacts of improved lentil varieties in Bangladesh. About 15% higher yields and gross margins, resulting in lots of savings on imports.
- Agro-Morphological Characterization of Lentil Germplasm of Indian National Genebank and Development of a Core Set for Efficient Utilization in Lentil Improvement Programs. And a core subset to boot. Unclear if any were used to breed the above.
- Variation in Germination Traits Inform Conservation Planning of Hawaiʻi’s Foundational ʻŌhiʻa Trees. Germination was lower from some populations than from others, but not because of environmental factors.
- Genomic Resources to Guide Improvement of the Shea Tree. Ok, great, but now what exactly? And no word on germination…
- Current Status of Biodiversity Assessment and Conservation of Wild Olive (Olea europaea L. subsp. europaea var. sylvestris). When can we expect something similar for shea tree?
- Extreme climate refugia: a case study of wild relatives of cacao (Theobroma cacao) in Colombia. The forest areas where wild cacao has survived the longest, and is particularly diverse, will be cut in half in 50 years. I wonder what the figures are for wild olive.
- Soil biomarkers of cacao tree cultivation in the sacred cacao groves of the northern Maya lowlands. Maybe re-introduce it? More here.
- How to save a landrace from extinction: the example of a winter squash landrace (Cucurbita maxima Duchesne) in Northern Italy (Lungavilla-Pavia). It’s great to have ‘Berrettina di Lungavilla’ back, but 7 years for one landrace? No sacred groves involved. Shea harvesters unavailable for comment.
- Collection, characterizaton, product quality evaluation, and conservation of genetic resources of yam (Dioscorea spp.) cultivars from Ekiti State, Nigeria. At least it’s more than one landrace.
- Genetic Diversity and Environmental Influence on Growth and Yield Parameters of Bambara Groundnut. 95 landraces, no less. All safe from extinction. Right?
Brainfood: Neodomestication, Millet diets, OFSP, Fruits, Okra core, Floating gardens, Quinoa evaluation, Bean cooking, Neolithic, Lychee genome, Climate change, European maize double
- Scaling up neodomestication for climate-ready crops. Ok, but when is enough enough?
- Can Feeding a Millet-Based Diet Improve the Growth of Children? — A Systematic Review and Meta-Analysis. Yes. So maybe make the most of the crops we already have?
- Does vitamin A rich orange-fleshed sweetpotato adoption improve household level diet diversity? Evidence from Ghana and Nigeria. Sometimes. So maybe make the most of the crops we already have?
- Global interdependence for fruit genetic resources: status and challenges in India. So many crops out there.
- DATASET: The World Vegetable Center okra (Abelmoschus esculentus) core collection as a source for flooding stress tolerance traits for breeding. This is one way of making the most of the crops we already have.
- The floating garden agricultural system of the Inle lake (Myanmar) as an example of equilibrium between food production and biodiversity maintenance. This is another way of making the most of the crops we already have.
- Phenotyping a diversity panel of quinoa using UAV-retrieved leaf area index, SPAD-based chlorophyll and a random forest approach. Oh look, here’s another, and all you need is a drone and fancy maths.
- The Phaseolus vulgaris L. Yellow Bean Collection: genetic diversity and characterization for cooking time. For this one you don’t even need a drone.
- Prehistoric Farming Settlements in Western Anatolia. What, only 5 crops?
- Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Ancient farmers knew what they were doing after all, eh?
- Expected global suitability of coffee, cashew and avocado due to climate change. Millennials could be in trouble if new crops don’t come along.
- Traditional Foods From Maize (Zea mays L.) in Europe. Maybe European millennials could eat more maize.
- Growing maize landraces in industrialized countries: from the search for seeds to the emergence of new practices and values. Nah, let’s domesticate something else instead.
Preserving vegetables
Regular readers will know that while we’re big fans here of African traditional vegetables, we are also skeptical about the usefulness of formal “protection” for foods. So I for one am a tiny bit conflicted about some recent news from Kenya:
The Intergovernmental Committee for Safeguarding of Intangible Cultural Heritage, upon the proposal, has selected Kenya’s success story of promoting traditional foods and safeguarding traditional foodways in Kenya as a programme, project, or activity best reflecting the principles and objectives of the Convention.
But only a tiny bit. Congratulations to everyone involved.