Fusarium graminearum is the fungus that causes Fusarium head blight, a serious disease of wheat and barley. FHB infects the flowers and makes itself at home in the seed, which ends up shrunken and white and loaded with toxins that can have a harmful effect on people and animals that eat the grain. A study just published in Science decoded the DNA sequence of the fungus and sheds some light on its virulence and variability ((The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization. Science: 317:1400 – 1402 DOI: 10.1126/science.1143708)).
The sequence of one strain is interesting enough, but the surprises emerged when the researchers, led by Corby Kistler at the University of Minnesota, compared two different strains. There were more than 10,000 differences between the two sequences. Those differences, however, were not spread evenly along the DNA; more than half of the differences were concentrated in just one eighth of the sequence.
So some regions of the genome are much less stable than others. And what genes are in those regions? Mostly ones concerned with infection and virulence, among them the genes for compounds that dissolve the host cell walls and others that digest host molecules so that the fungus can make use of them.
Just why the variability in Fusarium graminearum is concentrated in some areas of the DNA is not yet clear. These areas seem to be hotspots for recombination, which shuffles the DNA during sexual reproduction and so promotes diversity, but this particular fungus doesn’t go in for sexual reproduction all that often. A mystery, then, but one that may still yield new approaches to breeding resistant wheat and barley and perhaps to new kinds of treatment.
You may remember that a joint team of Israeli and US researchers recently reported that a wild relative of wheat, Sharon Goatgrass (Aegilops sharonensis), is loaded with resistance genes that protect it against seven of the most important fungal diseases of wheat. Alas, none of the samples tested was resistant to Fusarium head blight. How about some other wild relative species, though? We shall see.