- NBPGR-PDS: A Precision Tool for Plant Germplasm Collecting. Fancy software can manage germplasm collecting info in the field.
- The role of genotypic and climatic variation at the range edge: A case study in winegrapes. Fancy software and analysis can predict how different grape varietals could expand in distribution under climate change.
- ClimMob: Software to support experimental citizen science in agriculture. Fancy software can help plan, manage and analyze large-scale, farmer-led germplasm evaluation trails.
- Herbarium specimen label transcription reimagined with large language models: Capabilities, productivity, and risks. Fancy software can transcribe herbarium labels.
- OliVaR: Improving olive variety recognition using deep neural networks. Fancy software can recognize olives.
- Reconstructing historic and modern potato late blight outbreaks using text analytics. Fancy software can track a pest epidemic.
- Evaluating responses by ChatGPT to farmers’ questions on irrigated lowland rice cultivation in Nigeria. Fancy software can be better than extension workers.
- Simulating pollen flow and field sampling constraints helps revise seed sampling recommendations for conserving genetic diversity. Fancy software and analysis can suggest changes to seed sampling strategies to take into account limited pollen flow.
Brainfood: Archaeology edition
- Early human selection of crops’ wild progenitors explains the acquisitive physiology of modern cultivars. The high leaf nitrogen, photosynthesis, conductance and transpiration of crops was already there in their wild relatives, the first farmers just happened to domesticate greedy plants.
- The impact of farming on prehistoric culinary practices throughout Northern Europe. When the first farmers arrived in northern Europe armed with their greedy plants, they learned a lot about food from the local hunter-fisher-gatherers, and vice-versa, but without much interbreeding. Jeremy interviews one of the authors on his podcast.
- Early contact between late farming and pastoralist societies in southeastern Europe. There was extensive interbreeding between farmers and the local transitional foragers/herders before with the expansion of pastoralist groups into Europe from the Eurasian steppes around 3300 BC.
- Isotopes prove advanced, integral crop production, and stockbreeding strategies nourished Trypillia mega-populations. The earliest European mega-settlements, in Ukraine and Moldova, from around 4000 BCE, integrated greedy crops and generous domesticated livestock.
- Inference of Admixture Origins in Indigenous African Cattle. Following introduction from the Near East, domesticated cattle got admixed with a North African extinct aurochs before spreading throughout Africa.
- Flax for seed or fibre use? Flax capsules from ancient Egyptian sites (3rd millennium BC to second century AD) compared with modern flax genebank accessions. Fibre first.
- Revealing the secrets of a 2900-year-old clay brick, discovering a time capsule of ancient DNA. DNA from 34 plant groups were detected inside an old brick when it happened to break.
- Making wine in earthenware vessels: a comparative approach to Roman vinification. Comparison with modern counterparts shows that Roman clay jars for storing wine were integral to the process. No word on whether there was any ancient DNA in the clay.
- Breadfruit in the Pacific Islands, its domestication and origins of cultivars grown in East Polynesia and Micronesia. Spoiler alert: they came from Polynesian Outlier Islands.
Brainfood: CGIAR impacts, Alternative ag, Landscape simplicity, Biocultural diversity, PPP, Bioversity & food security, Landrace legislation, Coffee ABS, Useful plants
- The economic impact of CGIAR-related crop technologies on agricultural productivity in developing countries, 1961–2020. In 2020, modern varieties bred by CGIAR or developed by other institutions using CGIAR germplasm were sown on about 190 M ha, about 26% of the total harvested area of these crops in developing countries, and 43% of the total area sown with modern varieties for these crops in developing countries. Yes, cool, but…
- Farming practices to enhance biodiversity across biomes: a systematic review. Less intensive practices generally enhance biodiversity.
- Effects of landscape simplicity on crop yield: A reanalysis of a global database. Simplifying landscapes is associated with lower rates of pollination, pest control and other ecosystem services, and lower crop yields.
- Biocultural diversity and crop improvement. Crop improvement can enhance crop diversity, but doesn’t always.
- Collaboration between Private and Public Genebanks in Conserving and Using Plant Genetic Resources. Vegetable breeding companies can contribute to the conservation of crop diversity by public genebanks, but it takes work on both sides.
- Eight arguments why biodiversity is important to safeguard food security. It’s not “stop hunger first, then worry about diversity afterward”. Or it shouldn’t be.
- Landrace legislation in the world: status and perspectives with emphasis in EU system. Policy can support the conservation and use of landraces. Or not. It’s a choice.
- Convention on Biological Diversity (CBD) and the Nagoya Protocol: Implications and Compliance Strategies for the Global Coffee Community. Maybe they should consider the Plant Treaty approach?
- The global distribution of plants used by humans. 35,687 of them, and their richness is negatively correlated with protected areas.
Brainfood: Breeding edition
- Climate-resilient crops: Lessons from xerophytes. Breeding for Na+ exclusion to improve salinity tolerance in crops has compromised their drought tolerance, but both tolerances are down to more gene copies in key families when comparing species.
- Innovation and Technological Mismatch: Experimental Evidence from Improved Crop Seeds. Breeders should strive to give farmers what they want, even if it means releasing multiple locally adapted varieties rather than a single blockbuster.
- Stressors and Resilience within the Cassava Value Chain in Nigeria: Preferred Cassava Variety Traits and Response Strategies of Men and Women to Inform Breeding. Man and women want different things from cassava breeders.
- Intra-household discrete choice experiment for trait preferences: a new method. If only there was a new way to measure that…
- Genome editing to re-domesticate and accelerate use of barley crop wild relatives. No word on whether men and women would edit different genes.
- Understanding Genome Structure Facilitates the Use of Wild Lentil Germplasm for Breeding: A Case Study with Shattering Loci. I suspect neither men nor women would tolerate shattering lentils.
- Repeat turnover meets stable chromosomes: repetitive DNA sequences mark speciation and gene pool boundaries in sugar beet and wild beets. But you can’t use wild species in breeding if you can’t cross them with the crop, and in beet that’s down to the repeatome. So maybe this would make a better case for domestication through gene editing than barley or lentils?
- Development of trait-specific genetic stocks derived from wild Cicer species as novel sources of resistance to important diseases for chickpea improvement. Would be really cool to domesticate one of the really resistant tertiary genepool species.
- Developing Genetic Resources Within the Chenopodium Genus to Advance Quinoa Breeding and the de novo Domestication of C. berlandieri. Not that you need gene editing for domesticating crop wild relatives.
- Genomic traces of Japanese malting barley breeding in two modern high-quality cultivars, ‘Sukai Golden’ and ‘Sachiho Golden’. Old-fashioned breeding has been pretty successful, so who needs CWR, gene editing and discrete choice experiments? ((Last bit added purely for clicks, I’m desperate.))
- Consistent effects of independent domestication events on the plant microbiota. I hope all those gene-editing de novo domesticators are considering the novo microbiomes.
Brainfood: Nutrition edition
- Which crop biodiversity is used by the food industry throughout the world? A first evidence for legume species. Mainly soy, alas. Which is bad because…
- Diversified agriculture leads to diversified diets: panel data evidence from Bangladesh. …promoting diversified farming systems and market participation is good for women’s empowerment and better diets. Which is just as well because…
- Historical shifting in grain mineral density of landmark rice and wheat cultivars released over the past 50 years in India. …breeding hasn’t been good for nutritional content in staples.
- Surviving mutations: how an Indonesian Capsicum frutescens L. cultivar maintains capsaicin biosynthesis despite disruptive mutations. But if you can breed for extreme pungency, you can surely breed for better nutrient content.
- Exploiting Indian landraces to develop biofortified grain sorghum with high protein and minerals. Yep, simple selection can make a sorghum landrace more nutritious.
- Genome-edited foods. Or you could resort to gene editing.
- Adoption and impact of improved amaranth cultivars in Tanzania using DNA fingerprinting. Although maybe it might be easier to just eat more amaranth.
- Stakeholders’ perceptions of and preferences for utilizing fonio (Digitaria exilis) to enrich local diets for food and nutritional security in Nigeria. But documenting knowledge will be key in either case.
- Domestication through clandestine cultivation constrained genetic diversity in magic mushrooms relative to naturalized populations. And watch what you’re doing to diversity.