Fungal agricultural biodiversity

More today about fungi as important constituents of agricultural biodiversity. Following the recent post on the microsymbiotic Frankia, I ran across a couple of papers on other fungi and their interactions with crop plants in agricultural systems. 

First, there’s Trichoderma. According to a recent review in Soil Biology and Biochemistry1:

Trichoderma spp. are among the most frequently isolated soil fungi and present in plant root ecosystems. These fungi are opportunistic, avirulent plant symbionts, and function as parasites and antagonists of many phytopathogenic fungi, thus protecting plants from disease. So far, Trichoderma spp. are among the most studied fungal BCAs [bio-control agents] and commercially marketed as biopesticides, biofertilizers and soil amendments. Depending upon the strain, the use of Trichoderma in agriculture can provide numerous advantages: (i) colonization of the rhizosphere by the BCA (“rhizosphere competence”) allowing rapid establishment within the stable microbial communities in the rhizosphere; (ii) control of pathogenic and competitive/deleterious microflora by using a variety of mechanisms; (iii) improvement of the plant health and (iv) stimulation of root growth.

Then there’s arbuscular mycorrhizal fungi (AMF). Another paper2 in the same journal suggests that different maize genotypes had quite different effects on the AMF population in the soil in which they were grown, stimulating “their own adapted phylogenetic AMF subgroups.” According to the authors:

Several new sets of data obtained in this way would be necessary to have a significant view of the actual beneficial interactions between rhizospheric microorganisms and plant roots; but we are confident that such an effort will lead to the definition of new criteria for the rapid breeding of sustainable varieties.

  1. Francesco Vinale, Krishnapillai Sivasithamparam, Emilio L. Ghisalberti, Roberta Marra, Sheridan L. Woo and Matteo Lorito, Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry. In Press, Uncorrected Proof. []
  2. Christine Picard, Elisa Baruffa and Marco Bosco, Enrichment and diversity of plant-probiotic microorganisms in the rhizosphere of hybrid maize during four growth cycles. Soil Biology and Biochemistry. In Press, Uncorrected Proof. []

Leave a Reply

Your email address will not be published. Required fields are marked *